BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27333371)

  • 1. In vitro calibration of the capacitance method (Corneometer CM 825) and conductance method (Skicon-200) for the evaluation of the hydration state of the skin.
    Barel AO; Clarys P
    Skin Res Technol; 1997 May; 3(2):107-13. PubMed ID: 27333371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration measurements of the stratum corneum: comparison between the capacitance method (digital version of the Corneometer CM 825®) and the impedance method (Skicon-200EX®).
    Clarys P; Clijsen R; Taeymans J; Barel AO
    Skin Res Technol; 2012 Aug; 18(3):316-23. PubMed ID: 22092664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of probe application pressure on in vitro and in vivo capacitance (Corneometer CM 825(®)) and conductance (Skicon 200 EX(®)) measurements.
    Clarys P; Clijsen R; Barel AO
    Skin Res Technol; 2011 Nov; 17(4):445-50. PubMed ID: 21338409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of 3 moisturisers on skin surface hydration: Electrical conductance (Skicon-200), capacitance (Corneometer CM420), and transepidermal water loss (TEWL).
    Møss J
    Skin Res Technol; 1996 Feb; 2(1):32-6. PubMed ID: 27327056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive comparison of facial skin hydration based on capacitance and conductance measurements in Chinese women.
    Voegeli R; Cherel M; Schoop R; Rawlings AV
    Int J Cosmet Sci; 2022 Dec; 44(6):703-718. PubMed ID: 35980652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of skin moisture. Measurement of electrical conductance, capacitance and transepidermal water loss.
    Blichmann CW; Serup J
    Acta Derm Venereol; 1988; 68(4):284-90. PubMed ID: 2459872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of hydration in the stratum corneum with the MoistureMeter and comparison with the Corneometer.
    Alanen E; Nuutinen J; Nicklén K; Lahtinen T; Mönkkönen J
    Skin Res Technol; 2004 Feb; 10(1):32-7. PubMed ID: 14731246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction, in vitro and in vivo evaluation of an in-house conductance meter for measurement of skin hydration.
    Hamed SH; Altrabsheh B; Assa'd T; Jaradat S; Alshra'ah M; Aljamal A; Alkhatib HS; Almalty AM
    Med Eng Phys; 2012 Dec; 34(10):1471-6. PubMed ID: 22430060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding effects of topical ingredients on electrical measurement of skin hydration.
    Crowther JM
    Int J Cosmet Sci; 2016 Dec; 38(6):589-598. PubMed ID: 27028308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical measurement of the water content of the stratum corneum in vivo and in vitro under various conditions: comparison between skin surface hygrometer and corneometer in evaluation of the skin surface hydration state.
    Hashimoto-Kumasaka K; Takahashi K; Tagami H
    Acta Derm Venereol; 1993 Oct; 73(5):335-9. PubMed ID: 7904396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin conductance; validation of Skicon-200EX compared to the original model, Skicon-100.
    O'goshi K; Serup J
    Skin Res Technol; 2007 Feb; 13(1):13-8. PubMed ID: 17250527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency conductance measurement of the skin surface hydration state of dry skin using a new probe studded with needle-form electrodes (MT-8C).
    Sasai S; Zhen YX; Tagami H
    Skin Res Technol; 1996 Nov; 2(4):173-6. PubMed ID: 27327549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-instrumental variation of skin capacitance measured with the Corneometer.
    O'goshi K; Serup J
    Skin Res Technol; 2005 May; 11(2):107-9. PubMed ID: 15807808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitance, transepidermal water loss and causal level of sebum in healthy subjects in relation to site, sex and age.
    Conti A; Schiavi ME; Seidenari S
    Int J Cosmet Sci; 1995 Apr; 17(2):77-85. PubMed ID: 19250473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical measurement of moisturizing effect on skin hydration and barrier function in psoriasis patients.
    Rim JH; Jo SJ; Park JY; Park BD; Youn JI
    Clin Exp Dermatol; 2005 Jul; 30(4):409-13. PubMed ID: 15953083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of near-infrared spectroscopy in skin care applications.
    Kilpatrick-Liverman L; Kazmi P; Wolff E; Polefka TG
    Skin Res Technol; 2006 Aug; 12(3):162-9. PubMed ID: 16827690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique.
    Debus K; Hartmann J; Kilic G; Lindau M
    Biophys J; 1995 Dec; 69(6):2808-22. PubMed ID: 8599687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of normal and rough human skin hydration in vivo: evaluation with four different instruments.
    Van Neste D
    J Dermatol Sci; 1991 Mar; 2(2):119-24. PubMed ID: 2064999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water sorption and electrical properties of a human nail.
    Martinsen OG; Grimnes S; Nilsen SH
    Skin Res Technol; 2008 May; 14(2):142-6. PubMed ID: 18412555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitance imaging of the skin surface.
    Batisse D; Giron F; Lévêque JL
    Skin Res Technol; 2006 May; 12(2):99-104. PubMed ID: 16626383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.