BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27333607)

  • 1. Improving the Transparency of an Exoskeleton Knee Joint Based on the Understanding of Motor Intent Using Energy Kernel Method of EMG.
    Chen X; Zeng Y; Yin Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):577-588. PubMed ID: 27333607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position-Independent Decoding of Movement Intention for Proportional Myoelectric Interfaces.
    Park KH; Suk HI; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):928-939. PubMed ID: 26415203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of robotic knee exoskeleton on human energy expenditure.
    Gams A; Petric T; Debevec T; Babic J
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1636-44. PubMed ID: 23340585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction and Classification of Multichannel Electromyographic Activation Trajectories for Hand Movement Recognition.
    AbdelMaseeh M; Chen TW; Stashuk DW
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):662-73. PubMed ID: 26099148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification.
    Gijsberts A; Atzori M; Castellini C; Muller H; Caputo B
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):735-44. PubMed ID: 24760932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of electromyography onset detection methods for real-time control of robotic exoskeletons.
    Carvalho CR; Fernández JM; Del-Ama AJ; Oliveira Barroso F; Moreno JC
    J Neuroeng Rehabil; 2023 Oct; 20(1):141. PubMed ID: 37872633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.
    Knaepen K; Beyl P; Duerinck S; Hagman F; Lefeber D; Meeusen R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1128-37. PubMed ID: 24846650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D; Rao G; Berton E
    J Biomech; 2010 Jun; 43(9):1827-30. PubMed ID: 20206935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolving Gaussian Process Autoregression Based Learning of Human Motion Intent Using Improved Energy Kernel Method of EMG.
    Zeng Y; Yang J; Peng C; Yin Y
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2556-2565. PubMed ID: 30629487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.
    Zhang Q; Hayashibe M; Azevedo-Coste C
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2299-307. PubMed ID: 23529189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knee angle-specific EMG normalization: the use of polynomial based EMG-angle relationships.
    Earp JE; Newton RU; Cormie P; Blazevich AJ
    J Electromyogr Kinesiol; 2013 Feb; 23(1):238-44. PubMed ID: 23063912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.