These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27333783)

  • 1. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases.
    Sun F; Huang L
    Sci China Life Sci; 2016 Jul; 59(7):709-16. PubMed ID: 27333783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi.
    Castillo-Lizardo M; Henneke G; Viguera E
    Front Microbiol; 2014; 5():403. PubMed ID: 25177316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of RadA and DNA Polymerases in Recombination-Associated DNA Synthesis in Hyperthermophilic Archaea.
    Hogrel G; Lu Y; Alexandre N; Bossé A; Dulermo R; Ishino S; Ishino Y; Flament D
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32674430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication.
    Henneke G; Flament D; Hübscher U; Querellou J; Raffin JP
    J Mol Biol; 2005 Jul; 350(1):53-64. PubMed ID: 15922358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An updated structural classification of replicative DNA polymerases.
    Raia P; Delarue M; Sauguet L
    Biochem Soc Trans; 2019 Feb; 47(1):239-249. PubMed ID: 30647142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis.
    Nagata M; Ishino S; Yamagami T; Ishino Y
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):695-704. PubMed ID: 30582424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of family D DNA polymerase from Thermococcus sp. 9°N.
    Greenough L; Menin JF; Desai NS; Kelman Z; Gardner AF
    Extremophiles; 2014 Jul; 18(4):653-64. PubMed ID: 24794034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay at the replisome mitigates the impact of oxidative damage on the genetic integrity of hyperthermophilic
    Killelea T; Palud A; Akcha F; Lemor M; L'haridon S; Godfroy A; Henneke G
    Elife; 2019 Jun; 8():. PubMed ID: 31184586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal Chromatin Proteins Cren7 and Sul7d Compact DNA by Bending and Bridging.
    Zhang Z; Zhan Z; Wang B; Chen Y; Chen X; Wan C; Fu Y; Huang L
    mBio; 2020 Jun; 11(3):. PubMed ID: 32518188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1.
    Sun F; Huang L
    Nucleic Acids Res; 2013 Sep; 41(17):8182-95. PubMed ID: 23821667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for DNA strand displacement by NHEJ repair polymerases.
    Bartlett EJ; Brissett NC; Plocinski P; Carlberg T; Doherty AJ
    Nucleic Acids Res; 2016 Mar; 44(5):2173-86. PubMed ID: 26405198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.
    Tori K; Kimizu M; Ishino S; Ishino Y
    J Bacteriol; 2007 Aug; 189(15):5652-7. PubMed ID: 17496095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Archaeal chromatin proteins.
    Zhang Z; Guo L; Huang L
    Sci China Life Sci; 2012 May; 55(5):377-85. PubMed ID: 22645082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The euryarchaeotes, a subdomain of Archaea, survive on a single DNA polymerase: fact or farce?
    Ishino Y; Cann IK
    Genes Genet Syst; 1998 Dec; 73(6):323-36. PubMed ID: 10333564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RecJ-like protein from Pyrococcus furiosus has 3'-5' exonuclease activity on RNA: implications for proofreading of 3'-mismatched RNA primers in DNA replication.
    Yuan H; Liu XP; Han Z; Allers T; Hou JL; Liu JH
    Nucleic Acids Res; 2013 Jun; 41(11):5817-26. PubMed ID: 23605041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea.
    Lemor M; Kong Z; Henry E; Brizard R; Laurent S; Bossé A; Henneke G
    J Mol Biol; 2018 Dec; 430(24):4908-4924. PubMed ID: 30342933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase switching on homotrimeric PCNA at the replication fork of the euryarchaea Pyrococcus abyssi.
    Rouillon C; Henneke G; Flament D; Querellou J; Raffin JP
    J Mol Biol; 2007 Jun; 369(2):343-55. PubMed ID: 17442344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and application of a family B DNA polymerase from the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans.
    Zhang L; Jiang D; Shi H; Wu M; Gan Q; Yang Z; Oger P
    Int J Biol Macromol; 2020 Aug; 156():217-224. PubMed ID: 32229210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Archaea: The Final Frontier of Chromatin.
    Laursen SP; Bowerman S; Luger K
    J Mol Biol; 2021 Mar; 433(6):166791. PubMed ID: 33383035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro replication slippage by DNA polymerases from thermophilic organisms.
    Viguera E; Canceill D; Ehrlich SD
    J Mol Biol; 2001 Sep; 312(2):323-33. PubMed ID: 11554789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.