These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27334184)

  • 1. Labyrinthine water flow across multilayer graphene-based membranes: Molecular dynamics versus continuum predictions.
    Yoshida H; Bocquet L
    J Chem Phys; 2016 Jun; 144(23):234701. PubMed ID: 27334184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations.
    Sahu P; Ali SM
    Phys Chem Chem Phys; 2019 Oct; 21(38):21389-21406. PubMed ID: 31531503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport.
    Gravelle S; Joly L; Ybert C; Bocquet L
    J Chem Phys; 2014 Nov; 141(18):18C526. PubMed ID: 25399191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Insight into Water Desalination across Multilayer Graphene Oxide Membranes.
    Chen B; Jiang H; Liu X; Hu X
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22826-22836. PubMed ID: 28640581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Water Transport through Graphene-Based Membranes: Insights from Nonequilibrium Molecular Dynamics.
    Muscatello J; Jaeger F; Matar OK; Müller EA
    ACS Appl Mater Interfaces; 2016 May; 8(19):12330-6. PubMed ID: 27121070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Continuum Intercalated Water Diffusion Explains Fast Permeation through Graphene Oxide Membranes.
    Jiao S; Xu Z
    ACS Nano; 2017 Nov; 11(11):11152-11161. PubMed ID: 29068657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-induced water flow through model nanopores.
    Goldsmith J; Martens CC
    Phys Chem Chem Phys; 2009 Jan; 11(3):528-33. PubMed ID: 19283270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast mass transport through sub-2-nanometer carbon nanotubes.
    Holt JK; Park HG; Wang Y; Stadermann M; Artyukhin AB; Grigoropoulos CP; Noy A; Bakajin O
    Science; 2006 May; 312(5776):1034-7. PubMed ID: 16709781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Study of Water Flow across Multiple Layers of Pristine, Oxidized, and Mixed Regions of Graphene Oxide.
    Willcox JA; Kim HJ
    ACS Nano; 2017 Feb; 11(2):2187-2193. PubMed ID: 28107621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of slit width on water permeation through graphene membrane by molecular dynamics simulations.
    Yamada T; Matsuzaki R
    Sci Rep; 2018 Jan; 8(1):339. PubMed ID: 29321489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confined Structures and Selective Mass Transport of Organic Liquids in Graphene Nanochannels.
    Jiao S; Zhou K; Wu M; Li C; Cao X; Zhang L; Xu Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37014-37022. PubMed ID: 30286295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakdown of fast water transport in graphene oxides.
    Wei N; Peng X; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012113. PubMed ID: 24580178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Performance of Vertically Aligned Graphene Array Membranes for Desalination.
    Toh W; Ang EYM; Lin R; Liu Z; Ng TY
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Fast and Robust Thermo-osmotic Flows through Carbon Nanotube Membranes: Thermodynamics Meets Hydrodynamics.
    Fu L; Merabia S; Joly L
    J Phys Chem Lett; 2018 Apr; 9(8):2086-2092. PubMed ID: 29624390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon membranes for efficient water-ethanol separation.
    Gravelle S; Yoshida H; Joly L; Ybert C; Bocquet L
    J Chem Phys; 2016 Sep; 145(12):124708. PubMed ID: 27782663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions.
    McKenzie S; Kang HC
    Phys Chem Chem Phys; 2014 Dec; 16(47):26004-15. PubMed ID: 25356833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable water desalination across graphene oxide framework membranes.
    Nicolaï A; Sumpter BG; Meunier V
    Phys Chem Chem Phys; 2014 May; 16(18):8646-54. PubMed ID: 24675972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic insights into the separation mechanism of multilayer graphene membranes for water desalination.
    Zhang J; Chen C; Pan J; Zhang L; Liang L; Kong Z; Wang X; Zhang W; Shen JW
    Phys Chem Chem Phys; 2020 Apr; 22(14):7224-7233. PubMed ID: 32207513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: the importance of hydrodynamic interactions.
    Hickey OA; Holm C; Smiatek J
    J Chem Phys; 2014 Apr; 140(16):164904. PubMed ID: 24784307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic slip can align thin nanoplatelets in shear flow.
    Kamal C; Gravelle S; Botto L
    Nat Commun; 2020 May; 11(1):2425. PubMed ID: 32415194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.