These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27334253)

  • 1. Si(C≡C)4-Based Single-Crystalline Semiconductor: Diamond-like Superlight and Superflexible Wide-Bandgap Material for the UV Photoconductive Device.
    Sun MJ; Cao X; Cao Z
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16551-4. PubMed ID: 27334253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superlight and Superflexible Three-Dimensional Semiconductor Frameworks A(X≡Y)
    Cao X; Li XF; Zhu ZZ
    Chem Asian J; 2017 Apr; 12(7):804-810. PubMed ID: 28211262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep elastic strain engineering of bandgap through machine learning.
    Shi Z; Tsymbalov E; Dao M; Suresh S; Shapeev A; Li J
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4117-4122. PubMed ID: 30770444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review.
    Zou Y; Zhang Y; Hu Y; Gu H
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29958452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-Principles Prediction of New 2D
    Bhandari Sharma S; Qattan I; Kc S; Abedrabbo S
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence.
    Jeon KJ; Lee Z; Pollak E; Moreschini L; Bostwick A; Park CM; Mendelsberg R; Radmilovic V; Kostecki R; Richardson TJ; Rotenberg E
    ACS Nano; 2011 Feb; 5(2):1042-6. PubMed ID: 21204572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy.
    Liu H; Lu J; Yang Z; Teng J; Ke L; Zhang X; Tong L; Sow CH
    Sci Rep; 2016 Jun; 6():27387. PubMed ID: 27263861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Solution-Processable Liquid-Crystalline Semiconductor for Low-Temperature-Annealed Air-Stable N-Channel Field-Effect Transistors.
    Ozdemir R; Choi D; Ozdemir M; Kim H; Kostakoğlu ST; Erkartal M; Kim H; Kim C; Usta H
    Chemphyschem; 2017 Apr; 18(7):850-861. PubMed ID: 28097755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility.
    Dai J; Zeng XC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7572-6. PubMed ID: 25966901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations.
    Harb M
    Phys Chem Chem Phys; 2015 Oct; 17(38):25244-9. PubMed ID: 26351755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, Optical, and Electronic Properties of Wide Bandgap Perovskites: Experimental and Theoretical Investigations.
    Kumawat NK; Tripathi MN; Waghmare U; Kabra D
    J Phys Chem A; 2016 Jun; 120(22):3917-23. PubMed ID: 27203800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction.
    Sang X; Wang Y; Wang Q; Zou L; Ge S; Yao Y; Wang X; Fan J; Sang D
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36771000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.
    De A; Pryor CE
    J Phys Condens Matter; 2014 Jan; 26(4):045801. PubMed ID: 24592487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipole-allowed direct band gap silicon superlattices.
    Oh YJ; Lee IH; Kim S; Lee J; Chang KJ
    Sci Rep; 2015 Dec; 5():18086. PubMed ID: 26656482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu
    Lin W; Stoumpos CC; Kontsevoi OY; Liu Z; He Y; Das S; Xu Y; McCall KM; Wessels BW; Kanatzidis MG
    J Am Chem Soc; 2018 Feb; 140(5):1894-1899. PubMed ID: 29332382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-layer MoS2 electronics.
    Lembke D; Bertolazzi S; Kis A
    Acc Chem Res; 2015 Jan; 48(1):100-10. PubMed ID: 25555202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polygermanes: bandgap engineering via tensile strain and side-chain substitution.
    Fa W; Zeng XC
    Chem Commun (Camb); 2014 Aug; 50(65):9126-9. PubMed ID: 24990582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Six novel carbon and silicon allotropes with their potential application in photovoltaic field.
    Zhang W; Chai C; Fan Q; Song Y; Yang Y
    J Phys Condens Matter; 2020 May; 32(35):. PubMed ID: 32294638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BC8 Silicon (Si-III) is a Narrow-Gap Semiconductor.
    Zhang H; Liu H; Wei K; Kurakevych OO; Le Godec Y; Liu Z; Martin J; Guerrette M; Nolas GS; Strobel TA
    Phys Rev Lett; 2017 Apr; 118(14):146601. PubMed ID: 28430499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.