These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27334420)

  • 1. Acoustically-driven thread-based tuneable gradient generators.
    Ramesan S; Rezk AR; Cheng KW; Chan PP; Yeo LY
    Lab Chip; 2016 Aug; 16(15):2820-8. PubMed ID: 27334420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells.
    Xu H; Wu J; Chu CC; Shuler ML
    Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform mixing in paper-based microfluidic systems using surface acoustic waves.
    Rezk AR; Qi A; Friend JR; Li WH; Yeo LY
    Lab Chip; 2012 Feb; 12(4):773-9. PubMed ID: 22193520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System.
    Khan AH; Smith NM; Tullier MP; Roberts BS; Englert D; Pojman JA; Melvin AT
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26735-26747. PubMed ID: 34081856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations.
    Del Amo C; Borau C; Movilla N; Asín J; García-Aznar JM
    Integr Biol (Camb); 2017 Apr; 9(4):339-349. PubMed ID: 28300261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform.
    Aung A; Theprungsirikul J; Lim HL; Varghese S
    Lab Chip; 2016 May; 16(10):1886-98. PubMed ID: 27097908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ generation of tunable porosity gradients in hydrogel-based scaffolds for microfluidic cell culture.
    Al-Abboodi A; Tjeung R; Doran PM; Yeo LY; Friend J; Yik Chan PP
    Adv Healthc Mater; 2014 Oct; 3(10):1655-70. PubMed ID: 24711346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.
    Jeong GS; Kwon GH; Kang AR; Jung BY; Park Y; Chung S; Lee SH
    Biomed Microdevices; 2011 Aug; 13(4):717-23. PubMed ID: 21494794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip.
    Dou J; Mao S; Li H; Lin JM
    Anal Chem; 2020 Jan; 92(1):892-898. PubMed ID: 31790197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons.
    Mo SJ; Lee JH; Kye HG; Lee JM; Kim EJ; Geum D; Sun W; Chung BG
    Analyst; 2020 Apr; 145(8):3081-3089. PubMed ID: 32150196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices.
    Dånmark S; Gladnikoff M; Frisk T; Zelenina M; Mustafa K; Russom A; Finne-Wistrand A
    Biomed Microdevices; 2012 Oct; 14(5):885-93. PubMed ID: 22714394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design keys for paper-based concentration gradient generators.
    Schaumburg F; Urteaga R; Kler PA; Berli CLA
    J Chromatogr A; 2018 Aug; 1561():83-91. PubMed ID: 29843946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.
    Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J
    Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.