BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27334770)

  • 21. Weight references for burned human skeletal remains from Portuguese samples.
    Gonçalves D; Cunha E; Thompson TJU
    J Forensic Sci; 2013 Sep; 58(5):1134-1140. PubMed ID: 23822840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sexual dimorphism of the lateral angle of the internal auditory canal and its potential for sex estimation of burned human skeletal remains.
    Gonçalves D; Thompson TJ; Cunha E
    Int J Legal Med; 2015 Sep; 129(5):1183-6. PubMed ID: 25649669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time burnt away: The impact of heat-induced changes on skeletal age-at-death diagnostic features.
    Rodrigues CO; Matos VMJ; Ferreira MT; Gonçalves D
    Sci Justice; 2022 Sep; 62(5):477-483. PubMed ID: 36336440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heat-induced Bone Diagenesis Probed by Vibrational Spectroscopy.
    Marques MPM; Mamede AP; Vassalo AR; Makhoul C; Cunha E; Gonçalves D; Parker SF; Batista de Carvalho LAE
    Sci Rep; 2018 Oct; 8(1):15935. PubMed ID: 30374054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical or thermal damage: differentiating between underlying mechanisms as a cause of bone fractures.
    S D; Krap T; Duijst W; Aalders MCG; Oostra RJ
    Int J Legal Med; 2022 Jul; 136(4):1133-1148. PubMed ID: 35487998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of victim age on burnt bone fragmentation: implications for remains recovery.
    Waterhouse K
    Forensic Sci Int; 2013 Sep; 231(1-3):409.e1-7. PubMed ID: 23683947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of burning on isotope ratio values in modern bone: Importance of experimental design for forensic applications.
    Sarancha JJ; Eerkens JW; Hopkins CJ; Gonçalves D; Cunha E; Oliveira-Santos I; Vassalo A; Gordon GW
    Forensic Sci Int; 2022 Aug; 337():111370. PubMed ID: 35816894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beyond metrics and morphology: the potential of FTIR-ATR and chemometrics to estimate age-at-death in human bone.
    Pedrosa M; Curate F; Batista de Carvalho LAE; Marques MPM; Ferreira MT
    Int J Legal Med; 2020 Sep; 134(5):1905-1914. PubMed ID: 32385593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An investigation of model forensic bone in soil environments studied using infrared spectroscopy.
    Howes JM; Stuart BH; Thomas PS; Raja S; O'Brien C
    J Forensic Sci; 2012 Sep; 57(5):1161-7. PubMed ID: 22880821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.
    Mieczkowska A; Mansur SA; Irwin N; Flatt PR; Chappard D; Mabilleau G
    Bone; 2015 Jul; 76():31-9. PubMed ID: 25813583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiating present-day from ancient bones by vibrational spectroscopy upon acetic acid treatment.
    Brandão ALC; Batista de Carvalho LAE; Gonçalves D; Piga G; Cunha E; Marques MPM
    Forensic Sci Int; 2023 Jun; 347():111690. PubMed ID: 37086578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing.
    Grunenwald A; Keyser C; Sautereau AM; Crubézy E; Ludes B; Drouet C
    Anal Bioanal Chem; 2014 Jul; 406(19):4691-704. PubMed ID: 24838416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of exogenous substances on the color of heated bones.
    Rosa J; Batista de Carvalho LAE; Gil FPSC; Marques MPM; Ferreira MT; Gonçalves D
    Am J Biol Anthropol; 2024 Jun; 184(2):e24905. PubMed ID: 38291805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A preliminary assessment of the identification of saw marks on burned bone.
    Marciniak SM
    J Forensic Sci; 2009 Jul; 54(4):779-85. PubMed ID: 19368621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research potential and limitations of trace analyses of cremated remains.
    Harbeck M; Schleuder R; Schneider J; Wiechmann I; Schmahl WW; Grupe G
    Forensic Sci Int; 2011 Jan; 204(1-3):191-200. PubMed ID: 20609539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First analysis of ancient burned human skeletal remains probed by neutron and optical vibrational spectroscopy.
    Festa G; Andreani C; Baldoni M; Cipollari V; Martínez-Labarga C; Martini F; Rickards O; Rolfo MF; Sarti L; Volante N; Senesi R; Stasolla FR; Parker SF; Vassalo AR; Mamede AP; Batista de Carvalho LAE; Marques MPM
    Sci Adv; 2019 Jun; 5(6):eaaw1292. PubMed ID: 31259242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Saving Old Bones: a non-destructive method for bone collagen prescreening.
    Sponheimer M; Ryder CM; Fewlass H; Smith EK; Pestle WJ; Talamo S
    Sci Rep; 2019 Sep; 9(1):13928. PubMed ID: 31558827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light microscopy of microfractures in burned bone.
    Schmidt CW; Uhlig R
    Methods Mol Biol; 2012; 915():227-34. PubMed ID: 22907411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of chronic hypoperfusion on rat cranial bone mineral and organic matrix. A Fourier transform infrared spectroscopy study.
    Boyar H; Zorlu F; Mut M; Severcan F
    Anal Bioanal Chem; 2004 Jun; 379(3):433-8. PubMed ID: 15042274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The forensic evaluation of burned skeletal remains: a synthesis.
    Ubelaker DH
    Forensic Sci Int; 2009 Jan; 183(1-3):1-5. PubMed ID: 19010619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.