BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27334958)

  • 1. "Real-time" imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects.
    Macefield VG; Henderson LA
    J Neurophysiol; 2016 Sep; 116(3):1199-207. PubMed ID: 27334958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of sites of sympathetic outflow at rest and during emotional arousal: concurrent recordings of sympathetic nerve activity and fMRI of the brain.
    Macefield VG; James C; Henderson LA
    Int J Psychophysiol; 2013 Sep; 89(3):451-9. PubMed ID: 23770086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time imaging of cortical and subcortical control of muscle sympathetic nerve activity in awake human subjects.
    James C; Macefield VG; Henderson LA
    Neuroimage; 2013 Apr; 70():59-65. PubMed ID: 23287526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Increases in Activity of the Human RVLM Through MSNA-Coupled fMRI.
    Macefield VG; Henderson LA
    Front Neurosci; 2019; 13():1369. PubMed ID: 32038124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and structural changes in the brain associated with the increase in muscle sympathetic nerve activity in obstructive sleep apnoea.
    Fatouleh RH; Hammam E; Lundblad LC; Macey PM; McKenzie DK; Henderson LA; Macefield VG
    Neuroimage Clin; 2014; 6():275-83. PubMed ID: 25379440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time imaging of brain areas involved in the generation of spontaneous skin sympathetic nerve activity at rest.
    James C; Henderson L; Macefield VG
    Neuroimage; 2013 Jul; 74():188-94. PubMed ID: 23485741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time imaging of the medullary circuitry involved in the generation of spontaneous muscle sympathetic nerve activity in awake subjects.
    Macefield VG; Henderson LA
    Hum Brain Mapp; 2010 Apr; 31(4):539-49. PubMed ID: 19777579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle sympathetic nerve activity-coupled changes in brain activity during sustained muscle pain.
    Kobuch S; Fazalbhoy A; Brown R; Macefield VG; Henderson LA
    Brain Behav; 2018 Mar; 8(3):e00888. PubMed ID: 29541532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time imaging of cortical areas involved in the generation of increases in skin sympathetic nerve activity when viewing emotionally charged images.
    Henderson LA; Stathis A; James C; Brown R; McDonald S; Macefield VG
    Neuroimage; 2012 Aug; 62(1):30-40. PubMed ID: 22580171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the human sympathetic connectome involved in blood pressure regulation.
    Macefield VG; Henderson LA
    Neuroimage; 2019 Nov; 202():116119. PubMed ID: 31446130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversal of functional changes in the brain associated with obstructive sleep apnoea following 6 months of CPAP.
    Fatouleh RH; Lundblad LC; Macey PM; McKenzie DK; Henderson LA; Macefield VG
    Neuroimage Clin; 2015; 7():799-806. PubMed ID: 26082888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiorespiratory coupling of sympathetic outflow in humans: a comparison of respiratory and cardiac modulation of sympathetic nerve activity to skin and muscle.
    Fatouleh R; Macefield VG
    Exp Physiol; 2013 Sep; 98(9):1327-36. PubMed ID: 23625953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apnea-induced cortical BOLD-fMRI and peripheral sympathoneural firing response patterns of awake healthy humans.
    Kimmerly DS; Morris BL; Floras JS
    PLoS One; 2013; 8(12):e82525. PubMed ID: 24358198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central circuitry responsible for the divergent sympathetic responses to tonic muscle pain in humans.
    Kobuch S; Fazalbhoy A; Brown R; Henderson LA; Macefield VG
    Hum Brain Mapp; 2017 Feb; 38(2):869-881. PubMed ID: 27696604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of sites of sympathetic outflow during concurrent recordings of sympathetic nerve activity and fMRI.
    Henderson LA; James C; Macefield VG
    Anat Rec (Hoboken); 2012 Sep; 295(9):1396-403. PubMed ID: 22851197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of electrical stimulation of ventromedial prefrontal cortex on skin sympathetic nerve activity.
    Patel M; Braun JA; Henderson LA; Dawood T; Macefield VG
    Cereb Cortex; 2024 Jun; 34(6):. PubMed ID: 38839074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sympathetic microneurography.
    Macefield VG
    Handb Clin Neurol; 2013; 117():353-64. PubMed ID: 24095138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency galvanic vestibular stimulation evokes two peaks of modulation in skin sympathetic nerve activity.
    Hammam E; Dawood T; Macefield VG
    Exp Brain Res; 2012 Jun; 219(4):441-6. PubMed ID: 22526950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the dorsolateral prefrontal cortex in control of skin sympathetic nerve activity in humans.
    Wong R; Sesa-Ashton G; Datta S; McCarthy B; Henderson LA; Dawood T; Macefield VG
    Cereb Cortex; 2023 Jun; 33(13):8265-8272. PubMed ID: 37143172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in regional grey matter volume of the brain are related to mean blood pressure and muscle sympathetic nerve activity in normotensive humans.
    Kobuch S; Fatouleh RH; Macefield JM; Henderson LA; Macefield VG
    J Hypertens; 2020 Feb; 38(2):303-313. PubMed ID: 31568059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.