These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 27335006)
1. Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Wang GL; Que F; Xu ZS; Wang F; Xiong AS Protoplasma; 2017 Mar; 254(2):839-848. PubMed ID: 27335006 [TBL] [Abstract][Full Text] [Related]
2. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. Wang GL; Que F; Xu ZS; Wang F; Xiong AS BMC Plant Biol; 2015 Dec; 15():290. PubMed ID: 26667233 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots. Wang GL; Huang Y; Zhang XY; Xu ZS; Wang F; Xiong AS Plant Cell Rep; 2016 Aug; 35(8):1743-55. PubMed ID: 27160835 [TBL] [Abstract][Full Text] [Related]
4. Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Tokunaga N; Uchimura N; Sato Y Protoplasma; 2006 Sep; 228(4):179-87. PubMed ID: 16983485 [TBL] [Abstract][Full Text] [Related]
5. Exogenous abscisic acid suppresses the lignification and changes the growth, root anatomical structure and related gene profiles of carrot. Khadr A; Wang Y; Que F; Li T; Xu Z; Xiong A Acta Biochim Biophys Sin (Shanghai); 2020 Jan; 52(1):97-100. PubMed ID: 31897466 [No Abstract] [Full Text] [Related]
6. Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot. Que F; Wang GL; Feng K; Xu ZS; Wang F; Xiong AS Plant Cell Rep; 2018 Jul; 37(7):1021-1032. PubMed ID: 29680943 [TBL] [Abstract][Full Text] [Related]
7. Exogenous GA Liu QY; Guo GS; Qiu ZF; Li XD; Zeng BS; Fan CJ Protoplasma; 2018 Jul; 255(4):1107-1119. PubMed ID: 29423752 [TBL] [Abstract][Full Text] [Related]
8. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Biemelt S; Tschiersch H; Sonnewald U Plant Physiol; 2004 May; 135(1):254-65. PubMed ID: 15122040 [TBL] [Abstract][Full Text] [Related]
9. Cytokinin (6-benzylaminopurine) elevates lignification and the expression of genes involved in lignin biosynthesis of carrot. Khadr A; Wang YH; Zhang RR; Wang XR; Xu ZS; Xiong AS Protoplasma; 2020 Nov; 257(6):1507-1517. PubMed ID: 32577829 [TBL] [Abstract][Full Text] [Related]
10. Elevated gibberellin enhances lignin accumulation in celery (Apium graveolens L.) leaves. Duan AQ; Feng K; Wang GL; Liu JX; Xu ZS; Xiong AS Protoplasma; 2019 May; 256(3):777-788. PubMed ID: 30604245 [TBL] [Abstract][Full Text] [Related]
11. Gibberellin inhibition of taproot formation by modulation of DELLA-NAC complex activity in turnip (Brassica rapa var. rapa). Liu Y; Wen J; Ke X; Zhang J; Sun X; Wang C; Yang Y Protoplasma; 2021 Sep; 258(5):925-934. PubMed ID: 33759028 [TBL] [Abstract][Full Text] [Related]
12. Effects of auxin (indole-3-butyric acid) on growth characteristics, lignification, and expression profiles of genes involved in lignin biosynthesis in carrot taproot. Khadr A; Wang GL; Wang YH; Zhang RR; Wang XR; Xu ZS; Tian YS; Xiong AS PeerJ; 2020; 8():e10492. PubMed ID: 33354430 [TBL] [Abstract][Full Text] [Related]
13. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot. Wang G; Huang W; Li M; Xu Z; Wang F; Xiong A Acta Biochim Biophys Sin (Shanghai); 2016 Sep; 48(9):795-803. PubMed ID: 27325823 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Ma J; Li J; Xu Z; Wang F; Xiong A Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714 [TBL] [Abstract][Full Text] [Related]
16. A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato. Noh SA; Lee HS; Huh GH; Oh MJ; Paek KH; Shin JS; Bae JM Transgenic Res; 2012 Apr; 21(2):265-78. PubMed ID: 21660481 [TBL] [Abstract][Full Text] [Related]
17. DcC4H and DcPER Are Important in Dynamic Changes of Lignin Content in Carrot Roots under Elevated Carbon Dioxide Stress. Wang YH; Wu XJ; Sun S; Xing GM; Wang GL; Que F; Khadr A; Feng K; Li T; Xu ZS; Xiong AS J Agric Food Chem; 2018 Aug; 66(30):8209-8220. PubMed ID: 29980166 [TBL] [Abstract][Full Text] [Related]
18. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Gibberd MR; Turner NC; Storey R Ann Bot; 2002 Dec; 90(6):715-24. PubMed ID: 12451027 [TBL] [Abstract][Full Text] [Related]
19. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.). Wang GL; Xu ZS; Wang F; Li MY; Tan GF; Xiong AS Plant Physiol Biochem; 2015 Sep; 94():10-8. PubMed ID: 25956452 [TBL] [Abstract][Full Text] [Related]