BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27335046)

  • 21. Ceramide and Sphingosine-1-Phosphate in Neurodegenerative Disorders and Their Potential Involvement in Therapy.
    Tringali C; Giussani P
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Sphingolipid Mediators on the Determination of Cochlear Survival in Ototoxicity.
    Tabuchi K; Hara A
    Curr Mol Pharmacol; 2018; 11(4):279-284. PubMed ID: 29766830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space.
    Tani M; Ito M; Igarashi Y
    Cell Signal; 2007 Feb; 19(2):229-37. PubMed ID: 16963225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate.
    Gomez-Muñoz A; Presa N; Gomez-Larrauri A; Rivera IG; Trueba M; Ordoñez M
    Prog Lipid Res; 2016 Jan; 61():51-62. PubMed ID: 26703189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cancer treatment strategies targeting sphingolipid metabolism.
    Oskouian B; Saba JD
    Adv Exp Med Biol; 2010; 688():185-205. PubMed ID: 20919655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy balance and the sphingosine-1-phosphate/ceramide axis.
    Green C; Mitchell S; Speakman J
    Aging (Albany NY); 2017 Dec; 9(12):2463-2464. PubMed ID: 29242408
    [No Abstract]   [Full Text] [Related]  

  • 27. Updates on sphingolipids: Spotlight on retinopathy.
    Shiwani HA; Elfaki MY; Memon D; Ali S; Aziz A; Egom EE
    Biomed Pharmacother; 2021 Nov; 143():112197. PubMed ID: 34560541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer.
    Hait NC; Maiti A
    Mediators Inflamm; 2017; 2017():4806541. PubMed ID: 29269995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondria and ceramide: intertwined roles in regulation of apoptosis.
    Birbes H; El Bawab S; Obeid LM; Hannun YA
    Adv Enzyme Regul; 2002; 42():113-29. PubMed ID: 12123710
    [No Abstract]   [Full Text] [Related]  

  • 30. Structural Basis for Ceramide Recognition and Hydrolysis by Human Neutral Ceramidase.
    Airola MV; Allen WJ; Pulkoski-Gross MJ; Obeid LM; Rizzo RC; Hannun YA
    Structure; 2015 Aug; 23(8):1482-1491. PubMed ID: 26190575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision?
    Lavieu G; Scarlatti F; Sala G; Levade T; Ghidoni R; Botti J; Codogno P
    Autophagy; 2007; 3(1):45-7. PubMed ID: 17035732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novelty of Sphingolipids in the Central Nervous System Physiology and Disease: Focusing on the Sphingolipid Hypothesis of Neuroinflammation and Neurodegeneration.
    Ayub M; Jin HK; Bae JS
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human Remyelination Promoting Antibody Stimulates Astrocytes Proliferation Through Modulation of the Sphingolipid Rheostat in Primary Rat Mixed Glial Cultures.
    Grassi S; Giussani P; Prioni S; Button D; Cao J; Hakimi I; Sarmiere P; Srinivas M; Cabitta L; Sonnino S; Prinetti A
    Neurochem Res; 2019 Jun; 44(6):1460-1474. PubMed ID: 30569280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurons and oligodendrocytes recycle sphingosine 1-phosphate to ceramide: significance for apoptosis and multiple sclerosis.
    Qin J; Berdyshev E; Goya J; Natarajan V; Dawson G
    J Biol Chem; 2010 May; 285(19):14134-43. PubMed ID: 20215115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction.
    Cirillo F; Piccoli M; Ghiroldi A; Monasky MM; Rota P; La Rocca P; Tarantino A; D'Imperio S; Signorelli P; Pappone C; Anastasia L
    J Cell Physiol; 2021 Jul; 236(7):4857-4873. PubMed ID: 33432663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities.
    Blaho VA
    Adv Exp Med Biol; 2020; 1274():101-135. PubMed ID: 32894509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sphingolipids in neuroinflammation: a potential target for diagnosis and therapy.
    Lee JY; Jin HK; Bae JS
    BMB Rep; 2020 Jan; 53(1):28-34. PubMed ID: 31818364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain.
    Salvemini D; Doyle T; Kress M; Nicol G
    Trends Pharmacol Sci; 2013 Feb; 34(2):110-8. PubMed ID: 23318139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of sphingolipids in endothelial barrier function.
    Jernigan PL; Makley AT; Hoehn RS; Edwards MJ; Pritts TA
    Biol Chem; 2015 Jun; 396(6-7):681-91. PubMed ID: 25867999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate.
    Waggoner DW; Gómez-Muñoz A; Dewald J; Brindley DN
    J Biol Chem; 1996 Jul; 271(28):16506-9. PubMed ID: 8663293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.