BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 27335222)

  • 1. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.
    Georgiadis M; Müller R; Schneider P
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of collagen fibril orientation on the anisotropic properties of peri-implant bone.
    Colabella L; Naili S; Le Cann S; Haiat G
    Biomech Model Mechanobiol; 2024 Jun; 23(3):879-891. PubMed ID: 38300439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of bone-like nanocomposites using multiphosphorylated peptides.
    Sfeir C; Fang PA; Jayaraman T; Raman A; Xiaoyuan Z; Beniash E
    Acta Biomater; 2014 May; 10(5):2241-9. PubMed ID: 24434535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure.
    Alexander B; Daulton TL; Genin GM; Lipner J; Pasteris JD; Wopenka B; Thomopoulos S
    J R Soc Interface; 2012 Aug; 9(73):1774-86. PubMed ID: 22345156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 3D organization of the mineralized scales of the sturgeon has structures reminiscent of dentin and bone: A FIB-SEM study.
    Milgram J; Rehav K; Ibrahim J; Shahar R; Weiner S
    J Struct Biol; 2023 Dec; 215(4):108045. PubMed ID: 37977509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebrate mineralized tissues: A modular structural analysis.
    Weiner S; Shahar R
    Acta Biomater; 2024 Apr; 179():1-12. PubMed ID: 38561073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragility of Bone Material Controlled by Internal Interfaces.
    Wagermaier W; Klaushofer K; Fratzl P
    Calcif Tissue Int; 2015 Sep; 97(3):201-12. PubMed ID: 25772807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired Synthesis of Mineralized Collagen Fibrils.
    Deshpande AS; Beniash E
    Cryst Growth Des; 2008 Aug; 8(8):3084-3090. PubMed ID: 19662103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.
    Hart NH; Nimphius S; Rantalainen T; Ireland A; Siafarikas A; Newton RU
    J Musculoskelet Neuronal Interact; 2017 Sep; 17(3):114-139. PubMed ID: 28860414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction as a promising tool to characterize bone nanocomposites.
    Tadano S; Giri B
    Sci Technol Adv Mater; 2011 Dec; 12(6):064708. PubMed ID: 27877458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Bone Mineralization.
    Murshed M
    Cold Spring Harb Perspect Med; 2018 Dec; 8(12):. PubMed ID: 29610149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel Chilean salmon fish backbone-based nanoHydroxyApatite functional biomaterial for potential use in bone tissue engineering.
    Muñoz F; Haidar ZS; Puigdollers A; Guerra I; Padilla MC; Ortega N; García MJ
    Front Med (Lausanne); 2024; 11():1330482. PubMed ID: 38774396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo imaging of bone collagen dynamics in zebrafish.
    Hino H; Kondo S; Kuroda J
    Bone Rep; 2024 Mar; 20():101748. PubMed ID: 38525199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-angle scattering tensor tomography algorithm for robust reconstruction of complex textures.
    Nielsen LC; Erhart P; Guizar-Sicairos M; Liebi M
    Acta Crystallogr A Found Adv; 2023 Nov; 79(Pt 6):515-526. PubMed ID: 37855136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure and Nanoporosity of Human Bone Shown with Correlative On-Axis Electron and Spectroscopic Tomographies.
    Micheletti C; Shah FA; Palmquist A; Grandfield K
    ACS Nano; 2023 Dec; 17(24):24710-24724. PubMed ID: 37846873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Structure and Properties of the Bone at Nano Level.
    Hamandi F; Goswami T
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36354587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone Molecular Modifications Induced by Diagenesis Followed-Up for 12 Months.
    Falgayrac G; Vitale R; Delannoy Y; Behal H; Penel G; Olejnik C; Duponchel L; Colard T
    Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techniques for bone assessment and characterization: porcine hard palate case study.
    Cañas-Gutiérrez A; Arboleda-Toro D; Monsalve-Vargas T; Castro-Herazo C; Meza-Meza JM
    Heliyon; 2022 Jun; 8(6):e09626. PubMed ID: 35711972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman Spectroscopy in Skeletal Tissue Disorders and Tissue Engineering: Present and Prospective.
    Fosca M; Basoli V; Della Bella E; Russo F; Vadalà G; Alini M; Rau JV; Verrier S
    Tissue Eng Part B Rev; 2022 Oct; 28(5):949-965. PubMed ID: 34579558
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.