BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 27335222)

  • 21. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering.
    Liu Y; Luo D; Wang T
    Small; 2016 Sep; 12(34):4611-32. PubMed ID: 27322951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles.
    Jäger I; Fratzl P
    Biophys J; 2000 Oct; 79(4):1737-46. PubMed ID: 11023882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structure of mineralized collagen fibrils.
    Katz EP; Wachtel E; Yamauchi M; Mechanic GL
    Connect Tissue Res; 1989; 21(1-4):149-54; discussion 155-8. PubMed ID: 2605938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections.
    Schwarcz HP
    Semin Cell Dev Biol; 2015 Oct; 46():44-50. PubMed ID: 26165821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue.
    Hang F; Barber AH
    J R Soc Interface; 2011 Apr; 8(57):500-5. PubMed ID: 20961895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone.
    Falgayrac G; Facq S; Leroy G; Cortet B; Penel G
    Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1-10-microm scale.
    Hellmich C; Ulm FJ
    Biomech Model Mechanobiol; 2003 Aug; 2(1):21-36. PubMed ID: 14586815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture.
    Fantner GE; Hassenkam T; Kindt JH; Weaver JC; Birkedal H; Pechenik L; Cutroni JA; Cidade GA; Stucky GD; Morse DE; Hansma PK
    Nat Mater; 2005 Aug; 4(8):612-6. PubMed ID: 16025123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue.
    Liu Y; Thomopoulos S; Chen C; Birman V; Buehler MJ; Genin GM
    J R Soc Interface; 2014 Mar; 11(92):20130835. PubMed ID: 24352669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The primary calcification in bones follows removal of decorin and fusion of collagen fibrils.
    Hoshi K; Kemmotsu S; Takeuchi Y; Amizuka N; Ozawa H
    J Bone Miner Res; 1999 Feb; 14(2):273-80. PubMed ID: 9933482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disuse Impairs the Mechanical Competence of Bone by Regulating the Characterizations of Mineralized Collagen Fibrils in Cortical Bone.
    Yang PF; Nie XT; Wang Z; Al-Qudsy LHH; Ren L; Xu HY; Rittweger J; Shang P
    Front Physiol; 2019; 10():775. PubMed ID: 31293444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unloading-Induced Degradation of the Anisotropic Arrangement of Collagen/Apatite in Rat Femurs.
    Wang J; Ishimoto T; Nakano T
    Calcif Tissue Int; 2017 Jan; 100(1):87-94. PubMed ID: 27771736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray diffraction by collagen in the fully mineralized cortical bone of cow tibia.
    Lees S; Hukins DW
    Bone Miner; 1992 Apr; 17(1):59-63. PubMed ID: 1581706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Microscopic aspects on biomineralization in bone].
    Amizuka N; Hasegawa T; Yamamoto T; Oda K
    Clin Calcium; 2014 Feb; 24(2):203-14. PubMed ID: 24473353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitamin K2, a gamma-carboxylating factor of gla-proteins, normalizes the bone crystal nucleation impaired by Mg-insufficiency.
    Amizuka N; Li M; Kobayashi M; Hara K; Akahane S; Takeuchi K; Freitas PH; Ozawa H; Maeda T; Akiyama Y
    Histol Histopathol; 2008 Nov; 23(11):1353-66. PubMed ID: 18785118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone.
    Rubin MA; Jasiuk I; Taylor J; Rubin J; Ganey T; Apkarian RP
    Bone; 2003 Sep; 33(3):270-82. PubMed ID: 13678767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Irregular shaped, assumably semi-crystalline calciumphosphate platelet deposition at the mineralization front of rabbit femur osteotomy: a HR-TEM study.
    Grüner D; Lips KS; Heiss C; Schnettler R; Kollmann T; Simon P; Kniep R
    Scanning; 2013; 35(3):169-82. PubMed ID: 22899186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between nanoscale mineral properties and calcein labeling in mineralizing bone surfaces.
    Aido M; Kerschnitzki M; Hoerth R; Burghammer M; Montero C; Checa S; Fratzl P; Duda GN; Willie BM; Wagermaier W
    Connect Tissue Res; 2014 Aug; 55 Suppl 1():15-7. PubMed ID: 25158172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.