These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27335247)

  • 1. Foreign Particle Promoted Crystalline Nucleation for Growing High-Quality Ultrathin Rubrene Films.
    Hu X; Wang Z; Zhu X; Zhu T; Zhang X; Dong B; Huang L; Chi L
    Small; 2016 Aug; 12(30):4086-92. PubMed ID: 27335247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors.
    Lee HM; Kim JJ; Choi JH; Cho SO
    ACS Nano; 2011 Oct; 5(10):8352-6. PubMed ID: 21923165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous-to-crystalline phase transformation of thin film rubrene.
    Park SW; Choi JM; Lee KH; Yeom HW; Im S; Lee YK
    J Phys Chem B; 2010 May; 114(17):5661-5. PubMed ID: 20392092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystalline growth of rubrene film enhanced by vertical ordering in cadmium arachidate multilayer substrate.
    Wang CH; Islam AK; Yang YW; Wu TY; Lue JW; Hsu CH; Sinha S; Mukherjee M
    Langmuir; 2013 Mar; 29(12):3957-67. PubMed ID: 23470181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics.
    Stingelin-Stutzmann N; Smits E; Wondergem H; Tanase C; Blom P; Smith P; de Leeuw D
    Nat Mater; 2005 Aug; 4(8):601-6. PubMed ID: 16025124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors.
    Zhang X; Deng W; Lu B; Fang X; Zhang X; Jie J
    Nanoscale Horiz; 2020 Jul; 5(7):1096-1105. PubMed ID: 32424385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubrene Thin Films with Viably Enhanced Charge Transport Fabricated by Cryo-Matrix-Assisted Laser Evaporation.
    Jendrzejewski R; Majewska N; Majumdar S; Sawczak M; Ryl J; Śliwiński G
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-Directed Crystallization for Printed Electronics.
    Qu G; Kwok JJ; Diao Y
    Acc Chem Res; 2016 Dec; 49(12):2756-2764. PubMed ID: 27993010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial stage of crystalline rubrene thin film growth on mica (0 0 1).
    Zaglmayr H; Sun LD; Weidlinger G; Al-Baqi SM; Sitter H; Zeppenfeld P
    Synth Met; 2011 Feb; 161(3-4):271-274. PubMed ID: 21552477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of crystalline rubrene films with enhanced stability.
    Käfer D; Witte G
    Phys Chem Chem Phys; 2005 Aug; 7(15):2850-3. PubMed ID: 16189602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and transport characterization of solution-processed rubrene thin films on polymer-modified substrates.
    Gao X; Liu W; Liu H; Huang M; He S; Zhang M; Hua Z; Zhu C
    Sci Rep; 2020 Jul; 10(1):12183. PubMed ID: 32699246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubrenes: planar and twisted.
    Paraskar AS; Reddy AR; Patra A; Wijsboom YH; Gidron O; Shimon LJ; Leitus G; Bendikov M
    Chemistry; 2008; 14(34):10639-47. PubMed ID: 18932176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.
    Wu K; Li H; Li L; Zhang S; Chen X; Xu Z; Zhang X; Hu W; Chi L; Gao X; Meng Y
    Langmuir; 2016 Jun; 32(25):6246-54. PubMed ID: 27267545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.
    Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R
    J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doped Highly Crystalline Organic Films: Toward High-Performance Organic Electronics.
    Sawatzki MF; Kleemann H; Boroujeni BK; Wang SJ; Vahland J; Ellinger F; Leo K
    Adv Sci (Weinh); 2021 Mar; 8(6):2003519. PubMed ID: 33747740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin organic semiconductor films--soft matter effect.
    Wang T; Yan D
    Adv Colloid Interface Sci; 2014 May; 207():332-46. PubMed ID: 24548597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable and coherent crystallization of semiconductors.
    Yu L; Niazi MR; Ngongang Ndjawa GO; Li R; Kirmani AR; Munir R; Balawi AH; Laquai F; Amassian A
    Sci Adv; 2017 Mar; 3(3):e1602462. PubMed ID: 28275737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.
    Huang L; Hu X; Chi L
    Langmuir; 2015 Sep; 31(36):9748-61. PubMed ID: 25992464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization of rubrene on a nanopillar-templated surface by the melt-recrystallization process and its application in field-effect transistors.
    Ho CC; Tao YT
    Chem Commun (Camb); 2015 Jan; 51(3):603-6. PubMed ID: 25415511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homoepitaxy of Crystalline Rubrene Thin Films.
    Fusella MA; Schreiber F; Abbasi K; Kim JJ; Briseno AL; Rand BP
    Nano Lett; 2017 May; 17(5):3040-3046. PubMed ID: 28394623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.