BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 27335455)

  • 21. Structural analysis revealed a novel conformation of the NTRC reductase domain from Chlamydomonas reinhardtii.
    Marchetti GM; Füsser F; Singh RK; Brummel M; Koch O; Kümmel D; Hippler M
    J Struct Biol; 2022 Mar; 214(1):107829. PubMed ID: 34974142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis.
    Ferrández J; González M; Cejudo FJ
    Plant Signal Behav; 2012 Sep; 7(9):1177-9. PubMed ID: 22899086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana.
    Yoshida K; Matsuoka Y; Hara S; Konno H; Hisabori T
    Plant Cell Physiol; 2014 Aug; 55(8):1415-25. PubMed ID: 24850837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of spinach ferredoxin-thioredoxin reductase using tandem T7 promoters and application of the purified protein for in vitro light-dependent thioredoxin-reduction system.
    Okegawa Y; Motohashi K
    Protein Expr Purif; 2016 May; 121():46-51. PubMed ID: 26773743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox-control of chlorophyll biosynthesis mainly depends on thioredoxins.
    Richter AS; Pérez-Ruiz JM; Cejudo FJ; Grimm B
    FEBS Lett; 2018 Sep; 592(18):3111-3115. PubMed ID: 30076598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts.
    Puerto-Galán L; Pérez-Ruiz JM; Guinea M; Cejudo FJ
    J Exp Bot; 2015 May; 66(10):2957-66. PubMed ID: 25560178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The thioredoxin (Trx) redox state sensor protein can visualize Trx activities in the light/dark response in chloroplasts.
    Sugiura K; Yokochi Y; Fu N; Fukaya Y; Yoshida K; Mihara S; Hisabori T
    J Biol Chem; 2019 Aug; 294(32):12091-12098. PubMed ID: 31217277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis.
    Da Q; Wang P; Wang M; Sun T; Jin H; Liu B; Wang J; Grimm B; Wang HB
    Plant Physiol; 2017 Oct; 175(2):652-666. PubMed ID: 28827456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thioredoxins Play a Crucial Role in Dynamic Acclimation of Photosynthesis in Fluctuating Light.
    Thormählen I; Zupok A; Rescher J; Leger J; Weissenberger S; Groysman J; Orwat A; Chatel-Innocenti G; Issakidis-Bourguet E; Armbruster U; Geigenberger P
    Mol Plant; 2017 Jan; 10(1):168-182. PubMed ID: 27940305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner.
    Wittmann D; Geigenberger P; Grimm B
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive.
    Pérez-Ruiz JM; González M; Spínola MC; Sandalio LM; Cejudo FJ
    Mol Plant; 2009 May; 2(3):457-67. PubMed ID: 19825629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cystathionine-β-synthase X proteins negatively regulate NADPH-thioredoxin reductase C activity.
    Tran CM; Mihara S; Yoshida K; Hisabori T
    Biochem Biophys Res Commun; 2023 Apr; 653():47-52. PubMed ID: 36857899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts.
    Yoshida K; Hara S; Hisabori T
    J Biol Chem; 2015 Jun; 290(23):14278-88. PubMed ID: 25878252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional Significance of NADPH-Thioredoxin Reductase C in the Antioxidant Defense System of Cyanobacterium Anabaena sp. PCC 7120.
    Mihara S; Yoshida K; Higo A; Hisabori T
    Plant Cell Physiol; 2017 Jan; 58(1):86-94. PubMed ID: 28011872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis.
    Naranjo B; Mignée C; Krieger-Liszkay A; Hornero-Méndez D; Gallardo-Guerrero L; Cejudo FJ; Lindahl M
    Plant Cell Environ; 2016 Apr; 39(4):804-22. PubMed ID: 26476233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox regulation of chloroplast metabolism.
    Cejudo FJ; González MC; Pérez-Ruiz JM
    Plant Physiol; 2021 May; 186(1):9-21. PubMed ID: 33793865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts.
    Michalska J; Zauber H; Buchanan BB; Cejudo FJ; Geigenberger P
    Proc Natl Acad Sci U S A; 2009 Jun; 106(24):9908-13. PubMed ID: 19470473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x.
    Bernal-Bayard P; Ojeda V; Hervás M; Cejudo FJ; Navarro JA; Velázquez-Campoy A; Pérez-Ruiz JM
    FEBS Lett; 2014 Nov; 588(23):4342-7. PubMed ID: 25448674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria.
    Pascual MB; Mata-Cabana A; Florencio FJ; Lindahl M; Cejudo FJ
    Plant Physiol; 2011 Apr; 155(4):1806-16. PubMed ID: 21335525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ternary protein complex of ferredoxin, ferredoxin:thioredoxin reductase, and thioredoxin studied by paramagnetic NMR spectroscopy.
    Xu X; Schürmann P; Chung JS; Hass MA; Kim SK; Hirasawa M; Tripathy JN; Knaff DB; Ubbink M
    J Am Chem Soc; 2009 Dec; 131(48):17576-82. PubMed ID: 19908864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.