BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27335662)

  • 1. DNA Extraction Protocol for Plants with High Levels of Secondary Metabolites and Polysaccharides without Using Liquid Nitrogen and Phenol.
    Sahu SK; Thangaraj M; Kathiresan K
    ISRN Mol Biol; 2012; 2012():205049. PubMed ID: 27335662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modified CTAB method for the extraction of high-quality RNA from mono-and dicotyledonous plants rich in secondary metabolites.
    Kiss T; Karácsony Z; Gomba-Tóth A; Szabadi KL; Spitzmüller Z; Hegyi-Kaló J; Cels T; Otto M; Golen R; Hegyi ÁI; Geml J; Váczy KZ
    Plant Methods; 2024 May; 20(1):62. PubMed ID: 38704591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic and anionic detergent buffers in sequence yield high-quality genomic DNA from diverse plant species.
    Krishnan S; Sasi S; Kodakkattumannil P; Al Senaani S; Lekshmi G; Kottackal M; Amiri KMA
    Anal Biochem; 2024 Jan; 684():115372. PubMed ID: 37940013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-free high-quality RNA extraction from 39 difficult-to-extract plant species (representing seasonal tissues and tissue types) of 32 families, and its validation for downstream molecular applications.
    Sasi S; Krishnan S; Kodackattumannil P; Shamisi AA; Aldarmaki M; Lekshmi G; Kottackal M; Amiri KMA
    Plant Methods; 2023 Aug; 19(1):84. PubMed ID: 37568159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid, simple and potentially universal method for DNA extraction from Opuntia spp. fresh cladode tissues suitable for PCR amplification.
    Raimundo J; Reis CMG; Ribeiro MM
    Mol Biol Rep; 2018 Oct; 45(5):1405-1412. PubMed ID: 30109548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of small scale methods for the rapid and efficient extraction of mitochondrial DNA from wheat crop suitable for down-stream processes.
    Ejaz M; Gaisheng Z; Na N; Huiyan Z; Qidi Z; Qunzhu W
    Genet Mol Res; 2014 Dec; 13(4):10320-31. PubMed ID: 25501244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an effective and efficient DNA isolation method for Cinnamomum species.
    Bhau BS; Gogoi G; Baruah D; Ahmed R; Hazarika G; Ghosh S; Borah B; Gogoi B; Sarmah DK; Nath SC; Wann SB
    Food Chem; 2015 Dec; 188():264-70. PubMed ID: 26041191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis and innovation of a simple and rapid method for high-quality RNA and DNA extraction of kiwifruit.
    Afshar-Mohammadian M; Rezadoost MH; Fallah SF
    MethodsX; 2018; 5():352-361. PubMed ID: 30050755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants.
    Rezadoost MH; Kordrostami M; Kumleh HH
    3 Biotech; 2016 Jun; 6(1):61. PubMed ID: 28330131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient method for isolation of high-quality RNA from Psidium guajava L. tissues.
    Carpinetti PA; Fioresi VS; Ignez da Cruz T; de Almeida FAN; Canal D; Ferreira A; Ferreira MFDS
    PLoS One; 2021; 16(7):e0255245. PubMed ID: 34310664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method for RNA isolation from various tissues of the tree
    Ouyang K; Li J; Huang H; Que Q; Li P; Chen X
    Biotechnol Biotechnol Equip; 2014 Nov; 28(6):1008-1013. PubMed ID: 26019587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites.
    Moazzam Jazi M; Rajaei S; Seyedi SM
    Physiol Mol Biol Plants; 2015 Oct; 21(4):597-603. PubMed ID: 26600686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High quality RNA isolation from ployphenol-, polysaccharide- and protein-rich tissues of lentil (Lens culinaris).
    Dash PK
    3 Biotech; 2013 Apr; 3(2):109-114. PubMed ID: 28324564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation of high-quality genomic DNA from plants].
    Luo ZY; Zhou G; Chen XH; Lu QH; Hu WX
    Hunan Yi Ke Da Xue Xue Bao; 2001 Apr; 26(2):178-80. PubMed ID: 12536665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of DNA extraction for RAPD and ISSR analysis of Arbutus unedo L. Leaves.
    Sá O; Pereira JA; Baptista P
    Int J Mol Sci; 2011; 12(6):4156-64. PubMed ID: 21747730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of six methods for Loa loa genomic DNA extraction.
    Dieki R; Eyang-Assengone ER; Makouloutou-Nzassi P; Bangueboussa F; Nsi Emvo E; Akue JP
    PLoS One; 2022; 17(3):e0265582. PubMed ID: 35312712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SarCTAB: an efficient and cost-effective DNA isolation protocol from geophytes.
    Dutta M; Sharma P; Raturi V; Bhargava B; Zinta G
    3 Biotech; 2024 Feb; 14(2):36. PubMed ID: 38221992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for the isolation of total RNA from Avicennia germinans leaves.
    Gonzalez-Mendoza D; Moreno AQ; Zapata-Perez O
    Z Naturforsch C J Biosci; 2008; 63(1-2):124-6. PubMed ID: 18386500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified protocol for rapid DNA isolation from cotton (
    Ali Q; Salisu IB; Raza A; Shahid AA; Rao AQ; Husnain T
    MethodsX; 2019; 6():259-264. PubMed ID: 30792967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber.
    Vennapusa AR; Somayanda IM; Doherty CJ; Jagadish SVK
    Sci Rep; 2020 Oct; 10(1):16887. PubMed ID: 33037299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.