BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27336693)

  • 1. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring kinase activity from phosphoproteomic data: Tool comparison and recent applications.
    Piersma SR; Valles-Marti A; Rolfs F; Pham TV; Henneman AA; Jiménez CR
    Mass Spectrom Rev; 2024; 43(4):725-751. PubMed ID: 36156810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PhosphoNetworks: a database for human phosphorylation networks.
    Hu J; Rho HS; Newman RH; Zhang J; Zhu H; Qian J
    Bioinformatics; 2014 Jan; 30(1):141-2. PubMed ID: 24227675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RegPhos: a system to explore the protein kinase-substrate phosphorylation network in humans.
    Lee TY; Bo-Kai Hsu J; Chang WC; Huang HD
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D777-87. PubMed ID: 21037261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A resource database for protein kinase substrate sequence-preference motifs based on large-scale mass spectrometry data.
    Poll BG; Leo KT; Deshpande V; Jayatissa N; Pisitkun T; Park E; Yang CR; Raghuram V; Knepper MA
    Cell Commun Signal; 2024 Feb; 22(1):137. PubMed ID: 38374071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotinylated phosphoproteins from kinase-catalyzed biotinylation are stable to phosphatases: implications for phosphoproteomics.
    Senevirathne C; Pflum MK
    Chembiochem; 2013 Feb; 14(3):381-7. PubMed ID: 23335220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals.
    Huang KY; Wu HY; Chen YJ; Lu CT; Su MG; Hsieh YC; Tsai CM; Lin KI; Huang HD; Lee TY; Chen YJ
    Database (Oxford); 2014; 2014(0):bau034. PubMed ID: 24771658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building and exploring an integrated human kinase network: global organization and medical entry points.
    Colinge J; César-Razquin A; Huber K; Breitwieser FP; Májek P; Superti-Furga G
    J Proteomics; 2014 Jul; 107(100):113-27. PubMed ID: 24704859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PhosMap: An ensemble bioinformatic platform to empower interactive analysis of quantitative phosphoproteomics.
    Tong M; Liu Z; Li J; Wei X; Shi W; Liang C; Yu C; Huang R; Lin Y; Wang X; Wang S; Wang Y; Huang J; Wang Y; Li T; Qin J; Zhan D; Ji ZL
    Comput Biol Med; 2024 May; 174():108391. PubMed ID: 38613887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMFPh: a maximal motif finder for phosphoproteomics datasets.
    Wang T; Kettenbach AN; Gerber SA; Bailey-Kellogg C
    Bioinformatics; 2012 Jun; 28(12):1562-70. PubMed ID: 22531218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic approaches for protein kinase substrate identification in Apicomplexa.
    Cabral G; Moss WJ; Brown KM
    Mol Biochem Parasitol; 2024 Sep; 259():111633. PubMed ID: 38821187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. phuEGO: A Network-Based Method to Reconstruct Active Signaling Pathways From Phosphoproteomics Datasets.
    Giudice G; Chen H; Koutsandreas T; Petsalaki E
    Mol Cell Proteomics; 2024 Jun; 23(6):100771. PubMed ID: 38642805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinase Substrate Profiling Using a Proteome-wide Serine-Oriented Human Peptide Library.
    Barber KW; Miller CJ; Jun JW; Lou HJ; Turk BE; Rinehart J
    Biochemistry; 2018 Aug; 57(31):4717-4725. PubMed ID: 29920078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.
    Tudor CO; Ross KE; Li G; Vijay-Shanker K; Wu CH; Arighi CN
    Database (Oxford); 2015; 2015():. PubMed ID: 25833953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of 492 human protein kinase substrate specificities.
    Safaei J; Maňuch J; Gupta A; Stacho L; Pelech S
    Proteome Sci; 2011 Oct; 9 Suppl 1(Suppl 1):S6. PubMed ID: 22165948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells.
    Gupta S; Maurya MR; Subramaniam S
    PLoS Comput Biol; 2010 Jan; 6(1):e1000654. PubMed ID: 20126526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating proteomics with electrochemistry for identifying kinase biomarkers.
    Amit E; Obena R; Wang YT; Zhuravel R; Reyes AJF; Elbaz S; Rotem D; Porath D; Friedler A; Chen YJ; Yitzchaik S
    Chem Sci; 2015 Aug; 6(8):4756-4766. PubMed ID: 29142712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Multilayer Heterogeneous Networks to Infer Functions of Phosphorylated Sites.
    Watson J; Schwartz JM; Francavilla C
    J Proteome Res; 2021 Jul; 20(7):3532-3548. PubMed ID: 34164982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The active kinome: The modern view of how active protein kinase networks fit in biological research.
    Alganem K; Hamoud AR; Creeden JF; Henkel ND; Imami AS; Joyce AW; Ryan V WG; Rethman JB; Shukla R; O'Donovan SM; Meller J; McCullumsmith R
    Curr Opin Pharmacol; 2022 Feb; 62():117-129. PubMed ID: 34968947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KANPHOS: Kinase-associated neural phospho-signaling database for data-driven research.
    Kannon T; Murashige S; Nishioka T; Amano M; Funahashi Y; Tsuboi D; Yamahashi Y; Nagai T; Kaibuchi K; Yoshimoto J
    Front Mol Neurosci; 2024; 17():1379089. PubMed ID: 38628370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.