These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27336693)

  • 1. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Phosphosites to Kinases.
    Munk S; Refsgaard JC; Olsen JV; Jensen LJ
    Methods Mol Biol; 2016; 1355():307-21. PubMed ID: 26584935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of kinase-substrate relations based on heterogeneous networks.
    Li H; Wang M; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542003. PubMed ID: 26608750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates.
    Kanshin E; Giguère S; Jing C; Tyers M; Thibault P
    Mol Cell Proteomics; 2017 May; 16(5):786-798. PubMed ID: 28265048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data.
    Kawata K; Yugi K; Hatano A; Kokaji T; Tomizawa Y; Fujii M; Uda S; Kubota H; Matsumoto M; Nakayama KI; Kuroda S
    Genes Cells; 2019 Jan; 24(1):82-93. PubMed ID: 30417516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NetworKIN: a resource for exploring cellular phosphorylation networks.
    Linding R; Jensen LJ; Pasculescu A; Olhovsky M; Colwill K; Bork P; Yaffe MB; Pawson T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D695-9. PubMed ID: 17981841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells.
    Wirbel J; Cutillas P; Saez-Rodriguez J
    Methods Mol Biol; 2018; 1711():103-132. PubMed ID: 29344887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Identification of Kinase-Substrate Relationship by Integrated Phosphoproteome and Interactome Analysis.
    Muraoka S; Adachi J
    Methods Mol Biol; 2024; 2823():11-25. PubMed ID: 39052211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-Based Analysis for Detecting Key Signaling Events from Time-Series Phosphoproteomics Data.
    Yang P; Zheng X; Jayaswal V; Hu G; Yang JY; Jothi R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004403. PubMed ID: 26252020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Plant Kinase Substrates Based on Kinase Assay-Linked Phosphoproteomics.
    Hsu CC; Arrington JV; Xue L; Tao WA
    Methods Mol Biol; 2017; 1636():327-335. PubMed ID: 28730489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
    Yao Q; Xu D
    Methods Mol Biol; 2017; 1558():127-138. PubMed ID: 28150236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Direct Kinase Substrates via Kinase Assay-Linked Phosphoproteomics.
    Xue L; Arrington JV; Tao WA
    Methods Mol Biol; 2016; 1355():263-73. PubMed ID: 26584932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring kinase activity from phosphoproteomic data: Tool comparison and recent applications.
    Piersma SR; Valles-Marti A; Rolfs F; Pham TV; Henneman AA; Jiménez CR
    Mass Spectrom Rev; 2024; 43(4):725-751. PubMed ID: 36156810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: Reanalysis of CPTAC ovarian cancer.
    Tong M; Yu C; Zhan D; Zhang M; Zhen B; Zhu W; Wang Y; Wu C; He F; Qin J; Li T
    EBioMedicine; 2019 Feb; 40():305-317. PubMed ID: 30594550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events.
    Patrick R; Lê Cao KA; Kobe B; Bodén M
    Bioinformatics; 2015 Feb; 31(3):382-9. PubMed ID: 25304781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase,
    Goel RK; Paczkowska M; Reimand J; Napper S; Lukong KE
    Mol Cell Proteomics; 2018 May; 17(5):925-947. PubMed ID: 29496907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhosphoNetworks: a database for human phosphorylation networks.
    Hu J; Rho HS; Newman RH; Zhang J; Zhu H; Qian J
    Bioinformatics; 2014 Jan; 30(1):141-2. PubMed ID: 24227675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome.
    Jurcik J; Sivakova B; Cipakova I; Selicky T; Stupenova E; Jurcik M; Osadska M; Barath P; Cipak L
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.