BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27336693)

  • 41. An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling.
    Schreiber TB; Mäusbacher N; Kéri G; Cox J; Daub H
    Mol Cell Proteomics; 2010 Jun; 9(6):1047-62. PubMed ID: 20071362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Systematic identification of ALK substrates by integrated phosphoproteome and interactome analysis.
    Adachi J; Kakudo A; Takada Y; Isoyama J; Ikemoto N; Abe Y; Narumi R; Muraoka S; Gunji D; Hara Y; Katayama R; Tomonaga T
    Life Sci Alliance; 2022 Aug; 5(8):. PubMed ID: 35508387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.
    Rabiee A; Schwämmle V; Sidoli S; Dai J; Rogowska-Wrzesinska A; Mandrup S; Jensen ON
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 27717184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression.
    Cacace AM; Michaud NR; Therrien M; Mathes K; Copeland T; Rubin GM; Morrison DK
    Mol Cell Biol; 1999 Jan; 19(1):229-40. PubMed ID: 9858547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation.
    Guo M; Huang BX
    Proteomics; 2013 Feb; 13(3-4):424-37. PubMed ID: 23125184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of Novel Physiological Substrates of
    Nakedi KC; Calder B; Banerjee M; Giddey A; Nel AJM; Garnett S; Blackburn JM; Soares NC
    Mol Cell Proteomics; 2018 Jul; 17(7):1365-1377. PubMed ID: 29549130
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage.
    Batth TS; Olsen JV
    Methods Mol Biol; 2016; 1355():179-92. PubMed ID: 26584926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics.
    Ferrando IM; Chaerkady R; Zhong J; Molina H; Jacob HK; Herbst-Robinson K; Dancy BM; Katju V; Bose R; Zhang J; Pandey A; Cole PA
    Mol Cell Proteomics; 2012 Aug; 11(8):355-69. PubMed ID: 22499769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinase-specific prediction of protein phosphorylation sites.
    Miller ML; Blom N
    Methods Mol Biol; 2009; 527():299-310, x. PubMed ID: 19241022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Selected Reaction Monitoring Methods to Systematically Quantify Kinase Abundance and Phosphorylation Stoichiometry in Human Samples.
    Beck K; Camp N; Bereman M; Bollinger J; Egertson J; MacCoss M; Wolf-Yadlin A
    Methods Mol Biol; 2017; 1636():353-369. PubMed ID: 28730491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. QIKS--Quantitative identification of kinase substrates.
    Morandell S; Grosstessner-Hain K; Roitinger E; Hudecz O; Lindhorst T; Teis D; Wrulich OA; Mazanek M; Taus T; Ueberall F; Mechtler K; Huber LA
    Proteomics; 2010 May; 10(10):2015-25. PubMed ID: 20217869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteome-wide analysis of temporal phosphorylation dynamics in lysophosphatidic acid-induced signaling.
    Mäusbacher N; Schreiber TB; Machatti M; Schaab C; Daub H
    Proteomics; 2012 Dec; 12(23-24):3485-98. PubMed ID: 23090842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.
    Bretaña NA; Lu CT; Chiang CY; Su MG; Huang KY; Lee TY; Weng SL
    PLoS One; 2012; 7(7):e40694. PubMed ID: 22844408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates.
    Xue L; Wang WH; Iliuk A; Hu L; Galan JA; Yu S; Hans M; Geahlen RL; Tao WA
    Proc Natl Acad Sci U S A; 2012 Apr; 109(15):5615-20. PubMed ID: 22451900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biotinylated phosphoproteins from kinase-catalyzed biotinylation are stable to phosphatases: implications for phosphoproteomics.
    Senevirathne C; Pflum MK
    Chembiochem; 2013 Feb; 14(3):381-7. PubMed ID: 23335220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries.
    Bekker-Jensen DB; Bernhardt OM; Hogrebe A; Martinez-Val A; Verbeke L; Gandhi T; Kelstrup CD; Reiter L; Olsen JV
    Nat Commun; 2020 Feb; 11(1):787. PubMed ID: 32034161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.
    Alli-Shaik A; Wee S; Lim LHK; Gunaratne J
    Breast Cancer Res; 2017 Dec; 19(1):132. PubMed ID: 29233185
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Illuminating the dark phosphoproteome.
    Needham EJ; Parker BL; Burykin T; James DE; Humphrey SJ
    Sci Signal; 2019 Jan; 12(565):. PubMed ID: 30670635
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resources for Assignment of Phosphorylation Sites on Peptides and Proteins.
    Ravikumar V; Macek B; Mijakovic I
    Methods Mol Biol; 2016; 1355():293-306. PubMed ID: 26584934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources.
    Li T; Du P; Xu N
    PLoS One; 2010 Nov; 5(11):e15411. PubMed ID: 21085571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.