BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27336855)

  • 1. Engaging Stakeholders To Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds.
    Kalcic MM; Kirchhoff C; Bosch N; Muenich RL; Murray M; Griffith Gardner J; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8135-45. PubMed ID: 27336855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie.
    Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF
    J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed.
    Muenich RL; Kalcic M; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8146-54. PubMed ID: 27322563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating management options to reduce Lake Erie algal blooms using an ensemble of watershed models.
    Martin JF; Kalcic MM; Aloysius N; Apostel AM; Brooker MR; Evenson G; Kast JB; Kujawa H; Murumkar A; Becker R; Boles C; Confesor R; Dagnew A; Guo T; Long CM; Muenich RL; Scavia D; Redder T; Robertson DM; Wang YC
    J Environ Manage; 2021 Feb; 280():111710. PubMed ID: 33308931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolved Reactive Phosphorus Loads to Western Lake Erie: The Hidden Influence of Nanoparticles.
    River M; Richardson CJ
    J Environ Qual; 2019 May; 48(3):645-653. PubMed ID: 31180434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate Change and Nutrient Loading in the Western Lake Erie Basin: Warming Can Counteract a Wetter Future.
    Kalcic MM; Muenich RL; Basile S; Steiner AL; Kirchhoff C; Scavia D
    Environ Sci Technol; 2019 Jul; 53(13):7543-7550. PubMed ID: 31244082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms.
    King WM; Curless SE; Hood JM
    Water Res; 2022 Aug; 222():118845. PubMed ID: 35868100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Patterns in Lake Erie Phosphorus and Chlorophyll
    Rowland FE; Stow CA; Johengen TH; Burtner AM; Palladino D; Gossiaux DC; Davis TW; Johnson LT; Ruberg S
    Environ Sci Technol; 2020 Jan; 54(2):835-841. PubMed ID: 31859490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie.
    Daloğlu I; Cho KH; Scavia D
    Environ Sci Technol; 2012 Oct; 46(19):10660-6. PubMed ID: 22962949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Less Agricultural Phosphorus Applied in 2019 Led to Less Dissolved Phosphorus Transported to Lake Erie.
    Guo T; Johnson LT; LaBarge GA; Penn CJ; Stumpf RP; Baker DB; Shao G
    Environ Sci Technol; 2021 Jan; 55(1):283-291. PubMed ID: 33283499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty analysis of the performance of a management system for achieving phosphorus load reduction to surface waters.
    Igras JD; Creed IF
    J Environ Manage; 2020 Dec; 276():111217. PubMed ID: 32871464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term and seasonal trend decomposition of Maumee River nutrient inputs to western Lake Erie.
    Stow CA; Cha Y; Johnson LT; Confesor R; Richards RP
    Environ Sci Technol; 2015 Mar; 49(6):3392-400. PubMed ID: 25679045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating ACPF and SWAT to Assess Potential Phosphorus Loading Reductions to Lake Erie: A Case Study.
    Yuan Y; Whisenant S
    Appl Eng Agric; 2023 Dec; 39(6):645-655. PubMed ID: 38756192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SWAT-based optimization tool for obtaining cost-effective strategies for agricultural conservation practice implementation at watershed scales.
    Liu Y; Guo T; Wang R; Engel BA; Flanagan DC; Li S; Pijanowski BC; Collingsworth PD; Lee JG; Wallace CW
    Sci Total Environ; 2019 Nov; 691():685-696. PubMed ID: 31325867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One size does not fit all: Toward regional conservation practice guidance to reduce phosphorus loss risk in the Lake Erie watershed.
    Macrae M; Jarvie H; Brouwer R; Gunn G; Reid K; Joosse P; King K; Kleinman P; Smith D; Williams M; Zwonitzer M
    J Environ Qual; 2021 May; 50(3):529-546. PubMed ID: 33742722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments.
    Gibbons KJ; Bridgeman TB
    Water Res; 2020 Sep; 182():116022. PubMed ID: 32623199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.
    Lizotte RE; Yasarer LM; Locke MA; Bingner RL; Knight SS
    J Environ Qual; 2017 Mar; 46(2):330-338. PubMed ID: 28380566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?
    Jarvie HP; Johnson LT; Sharpley AN; Smith DR; Baker DB; Bruulsema TW; Confesor R
    J Environ Qual; 2017 Jan; 46(1):123-132. PubMed ID: 28177409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SWAT model application for evaluating agricultural conservation practice effectiveness in reducing phosphorous loss from the Western Lake Erie Basin.
    Yuan Y; Koropeckyj-Cox L
    J Environ Manage; 2022 Jan; 302(Pt A):114000. PubMed ID: 34872174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.