BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27337134)

  • 1. Biosynthesis of the leucine derived α-, β- and γ-hydroxynitrile glucosides in barley (Hordeum vulgare L.).
    Knoch E; Motawie MS; Olsen CE; Møller BL; Lyngkjaer MF
    Plant J; 2016 Oct; 88(2):247-256. PubMed ID: 27337134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine-derived cyano glucosides in barley.
    Nielsen KA; Olsen CE; Pontoppidan K; Møller BL
    Plant Physiol; 2002 Jul; 129(3):1066-75. PubMed ID: 12114561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of biosynthetic genes, specific SNP patterns and differences in transcript accumulation cause variation in hydroxynitrile glucoside content in barley cultivars.
    Ehlert M; Jagd LM; Braumann I; Dockter C; Crocoll C; Motawia MS; Møller BL; Lyngkjær MF
    Sci Rep; 2019 Apr; 9(1):5730. PubMed ID: 30952890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.
    Nielsen KA; Hrmova M; Nielsen JN; Forslund K; Ebert S; Olsen CE; Fincher GB; Møller BL
    Planta; 2006 Apr; 223(5):1010-23. PubMed ID: 16307283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.
    Lai D; Pičmanová M; Abou Hachem M; Motawia MS; Olsen CE; Møller BL; Rook F; Takos AM
    Plant Mol Biol; 2015 Sep; 89(1-2):21-34. PubMed ID: 26249044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxynitrile glucosides.
    Bjarnholt N; Møller BL
    Phytochemistry; 2008 Jul; 69(10):1947-61. PubMed ID: 18539303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport.
    Marinova K; Kleinschmidt K; Weissenböck G; Klein M
    Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in isovitexin-O-glycosylation during the development of young barley plants.
    Brauch D; Porzel A; Schumann E; Pillen K; Mock HP
    Phytochemistry; 2018 Apr; 148():11-20. PubMed ID: 29421507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible evolution of alliarinoside biosynthesis from the glucosinolate pathway in Alliaria petiolata.
    Frisch T; Møller BL
    FEBS J; 2012 May; 279(9):1545-62. PubMed ID: 22212644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077.
    Michlmayr H; Varga E; Lupi F; Malachová A; Hametner C; Berthiller F; Adam G
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigured Cyanogenic Glucoside Biosynthesis in
    Hansen CC; Sørensen M; Veiga TAM; Zibrandtsen JFS; Heskes AM; Olsen CE; Boughton BA; Møller BL; Neilson EHJ
    Plant Physiol; 2018 Nov; 178(3):1081-1095. PubMed ID: 30297456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of cyanogenic glucosides in
    Lai D; Maimann AB; Macea E; Ocampo CH; Cardona G; Pičmanová M; Darbani B; Olsen CE; Debouck D; Raatz B; Møller BL; Rook F
    Plant Direct; 2020 Aug; 4(8):e00244. PubMed ID: 32775954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench).
    Blomstedt CK; O'Donnell NH; Bjarnholt N; Neale AD; Hamill JD; Møller BL; Gleadow RM
    Plant Cell Physiol; 2016 Feb; 57(2):373-86. PubMed ID: 26493517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific dynamics of specialized metabolism in germinating sorghum grain revealed by temporal and tissue-resolved transcriptomics and metabolomics.
    Liu H; Micic N; Miller S; Crocoll C; Bjarnholt N
    Plant Physiol Biochem; 2023 Mar; 196():807-820. PubMed ID: 36863218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare.
    Shoeva OY; Mock HP; Kukoeva TV; Börner A; Khlestkina EK
    PLoS One; 2016; 11(10):e0163782. PubMed ID: 27706214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene.
    Arora D; Gross T; Brueggeman R
    Phytopathology; 2013 Nov; 103(11):1153-61. PubMed ID: 23841622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype, environment and G × E interaction influence (1,3;1,4)-β-d-glucan fine structure in barley (Hordeum vulgare L.).
    Cory AT; Gangola MP; Anyia A; Båga M; Chibbar RN
    J Sci Food Agric; 2017 Feb; 97(3):743-752. PubMed ID: 27145288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone.
    Strygina KV; Börner A; Khlestkina EK
    BMC Plant Biol; 2017 Nov; 17(Suppl 1):184. PubMed ID: 29143621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.