These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 27337447)

  • 41. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens?
    Andersson A; Ronner U; Granum PE
    Int J Food Microbiol; 1995 Dec; 28(2):145-55. PubMed ID: 8750663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Immunofluorescence study of Clostridium perfringens sporulation and enterotoxin formation].
    Torres-Anjel MJ; Riemann HP; Cruz A
    Rev Latinoam Microbiol; 1978; 20(1):25-9. PubMed ID: 220691
    [No Abstract]   [Full Text] [Related]  

  • 44. Sporulation and enterotoxin production by Clostridium perfringens type A under conditions of controlled pH and temperature.
    Labbe RG; Duncan CL
    Can J Microbiol; 1974 Nov; 20(11):1493-501. PubMed ID: 4373153
    [No Abstract]   [Full Text] [Related]  

  • 45. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens.
    Harry KH; Zhou R; Kroos L; Melville SB
    J Bacteriol; 2009 Apr; 191(8):2728-42. PubMed ID: 19201796
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Four foodborne disease outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens.
    Monma C; Hatakeyama K; Obata H; Yokoyama K; Konishi N; Itoh T; Kai A
    J Clin Microbiol; 2015 Mar; 53(3):859-67. PubMed ID: 25568432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enterotoxin production by lecithinase-positive and lecithinase-negative Clostridium perfringens isolated from food poisoning outbreaks and other sources.
    Skjelkvåle R; Stringer MF; Smart JL
    J Appl Bacteriol; 1979 Oct; 47(2):329-39. PubMed ID: 232099
    [No Abstract]   [Full Text] [Related]  

  • 48. Growth, sporulation and enterotoxin production by Clostridium perfringens type A in the presence of human bile salts.
    Heredia NL; Labbe RG; Rodriguez MA; Garcia-Alvarado JS
    FEMS Microbiol Lett; 1991 Nov; 68(1):15-21. PubMed ID: 1769549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enterotoxigenic Clostridium perfringens: detection and identification.
    Miyamoto K; Li J; McClane BA
    Microbes Environ; 2012; 27(4):343-9. PubMed ID: 22504431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relation of enterotoxigenic Clostridium perfringens type A to food poisoning. II. Acid exposure and storage conditions affecting enterotoxigenesis of C. perfringens.
    Tsai C; Riemann HP
    Taiwan Yi Xue Hui Za Zhi; 1974 Dec; 73(12):703-8. PubMed ID: 4377155
    [No Abstract]   [Full Text] [Related]  

  • 51. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.
    Liu H; Ray WK; Helm RF; Popham DL; Melville SB
    J Bacteriol; 2016 Jun; 198(12):1773-1782. PubMed ID: 27068591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens.
    Czeczulin JR; Collie RE; McClane BA
    Infect Immun; 1996 Aug; 64(8):3301-9. PubMed ID: 8757868
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes.
    Li J; McClane BA
    Appl Environ Microbiol; 2006 Dec; 72(12):7620-5. PubMed ID: 17041163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A proposed sero-grouping scheme for epidemiological investigation of food poisoning due to Clostridium perfringens type A.
    Chakrabarty AK; Narayan KG
    Zentralbl Bakteriol Orig A; 1979 Oct; 245(1-2):114-22. PubMed ID: 44603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat.
    Alnoman M; Udompijitkul P; Sarker MR
    Food Microbiol; 2017 Jun; 64():15-22. PubMed ID: 28213020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Further characterization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expression.
    Li J; Paredes-Sabja D; Sarker MR; McClane BA
    PLoS One; 2009 Jul; 4(7):e6249. PubMed ID: 19609432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibitory effects of nisin against Clostridium perfringens food poisoning and nonfood-borne isolates.
    Udompijitkul P; Paredes-Sabja D; Sarker MR
    J Food Sci; 2012 Jan; 77(1):M51-6. PubMed ID: 22132724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prevalence of food-poisoning (enterotoxigenic) Clostridium perfringens type A in blood and fish meal.
    Chakrabarty AK; Boro BR
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981 Jan; 172(4-5):427-33. PubMed ID: 6261484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CHARACTERISTICS OF CLOSTRIDIUM PERFRINGENS STRAINS ASSOCIATED WITH FOOD AND FOOD-BORNE DISEASE.
    HALL HE; ANGELOTTI R; LEWIS KH; FOTER MJ
    J Bacteriol; 1963 May; 85(5):1094-103. PubMed ID: 14044000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Overexpressing the
    Mehdizadeh Gohari I; Gonzales JL; Uzal FA; McClane BA
    Toxins (Basel); 2024 Apr; 16(4):. PubMed ID: 38668620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.