These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 27337447)

  • 61. Prevalence of food-poisoning (enterotoxigenic) Clostridium perfringens type A in blood and fish meal.
    Chakrabarty AK; Boro BR
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981 Jan; 172(4-5):427-33. PubMed ID: 6261484
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CHARACTERISTICS OF CLOSTRIDIUM PERFRINGENS STRAINS ASSOCIATED WITH FOOD AND FOOD-BORNE DISEASE.
    HALL HE; ANGELOTTI R; LEWIS KH; FOTER MJ
    J Bacteriol; 1963 May; 85(5):1094-103. PubMed ID: 14044000
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Clostridium perfringens].
    Komatsu H; Inui A; Sogo T; Fujisawa T
    Nihon Rinsho; 2012 Aug; 70(8):1357-61. PubMed ID: 22894072
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Public health importance of Clostridium perfringens.
    Genigeorgis C
    J Am Vet Med Assoc; 1975 Nov; 167(9):821-7. PubMed ID: 241737
    [No Abstract]   [Full Text] [Related]  

  • 65. Effects of sporulation conditions on the growth, germination, and resistance of Clostridium perfringens spores.
    Liang D; Cui X; Li M; Zhu Y; Zhao L; Liu S; Zhao G; Wang N; Ma Y; Xu L
    Int J Food Microbiol; 2023 Jul; 396():110200. PubMed ID: 37119648
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evidence for stable messenger ribonucleic acid during sporulation and enterotoxin synthesis by Clostridium perfringens type A.
    Labbe RG; Duncan CL
    J Bacteriol; 1977 Feb; 129(2):843-9. PubMed ID: 190209
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Survival and growth of enterotoxin-positive and enterotoxin-negative Clostridium perfringens in laboratory media.
    Miwa N; Masuda T; Kwamura A; Terai K; Akiyama M
    Int J Food Microbiol; 2002 Feb; 72(3):233-8. PubMed ID: 11845822
    [TBL] [Abstract][Full Text] [Related]  

  • 68. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718.
    Li J; Ma M; Sarker MR; McClane BA
    mBio; 2013 Oct; 4(5):e00770-13. PubMed ID: 24105766
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Distribution of Enterotoxin- and Epsilon-Positive Clostridium perfringens Spores in U.S. Retail Spices.
    Lee CA; Labbé R
    J Food Prot; 2018 Mar; 81(3):394-399. PubMed ID: 29420063
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Native or Proteolytically Activated NanI Sialidase Enhances the Binding and Cytotoxic Activity of Clostridium perfringens Enterotoxin and Beta Toxin.
    Theoret JR; Li J; Navarro MA; Garcia JP; Uzal FA; McClane BA
    Infect Immun; 2018 Jan; 86(1):. PubMed ID: 29038129
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Alteration in sporulation, enterotoxin production, and protein synthesis by Clostridium perfringens type A following heat shock.
    Heredia NL; Labbé RG; García-Alvarado JS
    J Food Prot; 1998 Sep; 61(9):1143-7. PubMed ID: 9766065
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biological behaviour of Clostridium perfringens type A strains.
    Chakrabarty AK; Narayan KG
    Indian J Exp Biol; 1979 May; 17(5):493-5. PubMed ID: 230152
    [No Abstract]   [Full Text] [Related]  

  • 74. Clostridium perfringens: Comparative effects of heat and osmotic stress on non-enterotoxigenic and enterotoxigenic strains.
    Abbona CC; Stagnitta PV
    Anaerobe; 2016 Jun; 39():105-13. PubMed ID: 27012900
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of High-Pressure Treatment on Spores of Clostridium Species.
    Doona CJ; Feeherry FE; Setlow B; Wang S; Li W; Nichols FC; Talukdar PK; Sarker MR; Li YQ; Shen A; Setlow P
    Appl Environ Microbiol; 2016 Sep; 82(17):5287-97. PubMed ID: 27316969
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces.
    Udompijitkul P; Alnoman M; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2013 Jun; 34(2):328-36. PubMed ID: 23541199
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production of small, acid-soluble spore proteins in Clostridium perfringens nonfoodborne gastrointestinal disease isolates.
    Raju D; Sarker MR
    Can J Microbiol; 2007 Apr; 53(4):514-8. PubMed ID: 17612607
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates.
    Alnoman M; Udompijitkul P; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2015 Jun; 48():89-98. PubMed ID: 25790996
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pathogenesis of Hobbs' heat-sensitive spore forming Clostridium perfringens type A strain.
    Chakrabarty AK; Narayan KG
    Microbiol Immunol; 1979; 23(4):213-21. PubMed ID: 224284
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthesis of deoxyribonucleic acid, ribonucleic acid, and protein during sporulation of Clostridium perfringens.
    Labbe RG; Duncan CL
    J Bacteriol; 1976 Feb; 125(2):444-52. PubMed ID: 173709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.