These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27337544)

  • 21. Oxygen-Plasma-Assisted Enhanced Acetone-Sensing Properties of ZnO Nanofibers by Electrospinning.
    Du H; Yang W; Yi W; Sun Y; Yu N; Wang J
    ACS Appl Mater Interfaces; 2020 May; 12(20):23084-23093. PubMed ID: 32339460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical ZnO nano-spines grown on a carbon fiber seed layer for efficient VOC removal and airborne virus and bacteria inactivation.
    Kang S; Park DH; Hwang J
    J Hazard Mater; 2022 Feb; 424(Pt A):127262. PubMed ID: 34583159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "Firecracker-shaped" ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process.
    Chang Z
    Chem Commun (Camb); 2011 Apr; 47(15):4427-9. PubMed ID: 21390377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity.
    Miao Y; Zhang H; Yuan S; Jiao Z; Zhu X
    J Colloid Interface Sci; 2016 Jan; 462():9-18. PubMed ID: 26433085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Assembly of SnO2/ZnO Nanostructures for Enhanced Photocatalytic Performance.
    Zhu L; Hong M; Wei Ho G
    Sci Rep; 2015 Jun; 5():11609. PubMed ID: 26109295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced photocatalytic H₂-production activity of bicomponent NiO/TiO₂ composite nanofibers.
    Li L; Cheng B; Wang Y; Yu J
    J Colloid Interface Sci; 2015 Jul; 449():115-21. PubMed ID: 25516356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anion-Regulated Synthesis of ZnO 1D Necklace-Like Nanostructures with High Photocatalytic Activity.
    Qin X; Shi D; Guo B; Fu C; Zhang J; Xie Q; Shi X; Chen F; Qin X; Yu W; Feng X; Liu Y; Luo D
    Nanoscale Res Lett; 2020 Nov; 15(1):206. PubMed ID: 33146758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesoporous TiO2 single crystals: facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance.
    Zheng X; Kuang Q; Yan K; Qiu Y; Qiu J; Yang S
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11249-57. PubMed ID: 24080091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of TiO2 nanofibers on reduced graphene sheets: Novel strategy in electrospinning.
    Pant HR; Adhikari SP; Pant B; Joshi MK; Kim HJ; Park CH; Kim CS
    J Colloid Interface Sci; 2015 Nov; 457():174-9. PubMed ID: 26164250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative studies on influence of morphology and La doping on structural, optical, and photocatalytic properties of zinc oxide nanostructures.
    Clament Sagaya Selvam N; Judith Vijaya J; John Kennedy L
    J Colloid Interface Sci; 2013 Oct; 407():215-24. PubMed ID: 23830280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li-Ion Storage.
    Hu S; Chen W; Uchaker E; Zhou J; Cao G
    Chemistry; 2015 Dec; 21(50):18248-57. PubMed ID: 26515375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermo-catalytic decomposition of formaldehyde: a novel approach to produce mesoporous ZnO for enhanced photocatalytic activities.
    Lei JF; Li LB; Du K; Ni J; Zhang SF; Zhao LZ
    Nanotechnology; 2014 Jun; 25(25):255701. PubMed ID: 24897060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directly assembling ligand-free ZnO nanocrystals into three-dimensional mesoporous structures by oriented attachment.
    Liu Y; Wang D; Peng Q; Chu D; Liu X; Li Y
    Inorg Chem; 2011 Jun; 50(12):5841-7. PubMed ID: 21608644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization of Photocatalytic ZnO Nanopowders Using Anodized Nanoporous Alumina Substrates.
    Park S; Han S; Kim JH; Lee SH; Choi S
    J Nanosci Nanotechnol; 2020 Nov; 20(11):6850-6854. PubMed ID: 32604526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.
    Kuriakose S; Satpati B; Mohapatra S
    Phys Chem Chem Phys; 2015 Oct; 17(38):25172-81. PubMed ID: 26352866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures.
    Wu W; Zhang S; Xiao X; Zhou J; Ren F; Sun L; Jiang C
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3602-9. PubMed ID: 22692878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel photoluminescence properties and enhanced photocatalytic activities for V2O5-loaded ZnO nanorods.
    Yin H; Yu K; Hu J; Song C; Guo B; Wang Z; Zhu Z
    Dalton Trans; 2015 Mar; 44(10):4671-8. PubMed ID: 25660766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the photocatalytic activity of bulk g-C₃N₄ by introducing mesoporous structure and hybridizing with graphene.
    Li Y; Sun Y; Dong F; Ho WK
    J Colloid Interface Sci; 2014 Dec; 436():29-36. PubMed ID: 25265582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple Growth of Faceted Au-ZnO Hetero-nanostructures on Silicon Substrates (Nanowires and Triangular Nanoflakes): A Shape and Defect Driven Enhanced Photocatalytic Performance under Visible Light.
    Ghosh A; Guha P; Samantara AK; Jena BK; Bar R; Ray SK; Satyam PV
    ACS Appl Mater Interfaces; 2015 May; 7(18):9486-96. PubMed ID: 25895657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable fabrication of TiO(2) 1D-nano/micro structures: solid, hollow, and tube-in-tube fibers by electrospinning and the photocatalytic performance.
    Lang L; Wu D; Xu Z
    Chemistry; 2012 Aug; 18(34):10661-8. PubMed ID: 22806770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.