These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 27337657)
1. Programming a topologically constrained DNA nanostructure into a sensor. Liu M; Zhang Q; Li Z; Gu J; Brennan JD; Li Y Nat Commun; 2016 Jun; 7():12074. PubMed ID: 27337657 [TBL] [Abstract][Full Text] [Related]
2. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Bi S; Li L; Zhang S Anal Chem; 2010 Nov; 82(22):9447-54. PubMed ID: 20954711 [TBL] [Abstract][Full Text] [Related]
3. Topological DNA Assemblies Containing Identical or Fraternal Twins. Wu ZS; Shen Z; Tram K; Salena BJ; Li Y Chembiochem; 2016 Jun; 17(12):1142-5. PubMed ID: 26994736 [TBL] [Abstract][Full Text] [Related]
4. Engineering interlocking DNA rings with weak physical interactions. Wu ZS; Shen Z; Tram K; Li Y Nat Commun; 2014 Jun; 5():4279. PubMed ID: 24969435 [TBL] [Abstract][Full Text] [Related]
5. Efficient Synthesis of Topologically Linked Three-Ring DNA Catenanes. Li Q; Wu G; Wu W; Liang X Chembiochem; 2016 Jun; 17(12):1127-31. PubMed ID: 27214092 [TBL] [Abstract][Full Text] [Related]
6. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification. Guo Y; Wang Y; Liu S; Yu J; Wang H; Wang Y; Huang J Biosens Bioelectron; 2016 Jan; 75():315-9. PubMed ID: 26334590 [TBL] [Abstract][Full Text] [Related]
7. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Li C; Wang Y; Li PF; Fu Q Acta Biomater; 2023 Apr; 160():1-13. PubMed ID: 36764595 [TBL] [Abstract][Full Text] [Related]
8. A novel family of structurally stable double stranded DNA catenanes. Lohmann F; Valero J; Famulok M Chem Commun (Camb); 2014 Jun; 50(46):6091-3. PubMed ID: 24777123 [TBL] [Abstract][Full Text] [Related]
9. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Liu M; Yin Q; McConnell EM; Chang Y; Brennan JD; Li Y Chemistry; 2018 Mar; 24(18):4473-4479. PubMed ID: 29240289 [TBL] [Abstract][Full Text] [Related]
10. A DNAzyme Feedback Amplification Strategy for Biosensing. Liu M; Zhang Q; Chang D; Gu J; Brennan JD; Li Y Angew Chem Int Ed Engl; 2017 May; 56(22):6142-6146. PubMed ID: 28370773 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent aptasensors for parallel analysis of biomolecules based on interlocked DNA catenane nanomachines. Liao H; Huang T; Hu L; Wang M Anal Chim Acta; 2020 Jun; 1114():1-6. PubMed ID: 32359510 [TBL] [Abstract][Full Text] [Related]
12. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing. Bi S; Yue S; Wu Q; Ye J Biosens Bioelectron; 2016 Sep; 83():281-6. PubMed ID: 27132002 [TBL] [Abstract][Full Text] [Related]
13. Construction of a structurally defined double-stranded DNA catenane. Schmidt TL; Heckel A Nano Lett; 2011 Apr; 11(4):1739-42. PubMed ID: 21410245 [TBL] [Abstract][Full Text] [Related]
14. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units. Wang F; Lu CH; Liu X; Freage L; Willner I Anal Chem; 2014 Feb; 86(3):1614-21. PubMed ID: 24377284 [TBL] [Abstract][Full Text] [Related]
15. Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane. Li Q; Li J; Cui Y; Liu S; An R; Liang X; Komiyama M Molecules; 2018 Sep; 23(9):. PubMed ID: 30189687 [TBL] [Abstract][Full Text] [Related]
16. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification. Xue Q; Wang Z; Wang L; Jiang W Bioconjug Chem; 2012 Apr; 23(4):734-9. PubMed ID: 22384977 [TBL] [Abstract][Full Text] [Related]
17. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390 [TBL] [Abstract][Full Text] [Related]
18. Model carbyne vs ideal and DNA catenanes. Dobrowolski JC; Mazurek AP J Chem Inf Model; 2005; 45(4):1030-8. PubMed ID: 16045298 [TBL] [Abstract][Full Text] [Related]
19. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364 [TBL] [Abstract][Full Text] [Related]
20. Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme. Dong H; Wang C; Xiong Y; Lu H; Ju H; Zhang X Biosens Bioelectron; 2013 Mar; 41():348-53. PubMed ID: 22981413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]