These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27337657)

  • 41. DNA Nanostructure as Smart Carriers for Drug Delivery.
    Ouyang X; Chao J; Su S; Fan C
    Methods Mol Biol; 2017; 1500():121-132. PubMed ID: 27813005
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.
    Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A
    Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A two-ring interlocked DNA catenane rotor undergoing switchable transitions across three states.
    Qi XJ; Lu CH; Cecconello A; Yang HH; Willner I
    Chem Commun (Camb); 2014 May; 50(36):4717-20. PubMed ID: 24676286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.
    Cheng W; Zhang W; Yan Y; Shen B; Zhu D; Lei P; Ding S
    Biosens Bioelectron; 2014 Dec; 62():274-9. PubMed ID: 25022510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection.
    Li C; Qiu X; Hou Z; Deng K
    Biosens Bioelectron; 2015 Feb; 64():505-10. PubMed ID: 25299987
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E; Hölzel R; Bier FF
    Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification.
    Bi S; Cui Y; Li L
    Analyst; 2013 Jan; 138(1):197-203. PubMed ID: 23148205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe.
    Zhu D; Yan Y; Lei P; Shen B; Cheng W; Ju H; Ding S
    Anal Chim Acta; 2014 Oct; 846():44-50. PubMed ID: 25220140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-primed isothermal amplification for genomic DNA detection of human papillomavirus.
    Lu W; Yuan Q; Yang Z; Yao B
    Biosens Bioelectron; 2017 Apr; 90():258-263. PubMed ID: 27915180
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.
    Ali MM; Li F; Zhang Z; Zhang K; Kang DK; Ankrum JA; Le XC; Zhao W
    Chem Soc Rev; 2014 May; 43(10):3324-41. PubMed ID: 24643375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine.
    Li D; Cheng W; Yan Y; Zhang Y; Yin Y; Ju H; Ding S
    Talanta; 2016; 146():470-6. PubMed ID: 26695292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of DNA topoisomers, knots, and catenanes by agarose gel electrophoresis.
    Levene SD
    Methods Mol Biol; 2009; 582():11-25. PubMed ID: 19763938
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanopore translocation of topologically linked DNA catenanes.
    Rheaume SN; Klotz AR
    Phys Rev E; 2023 Feb; 107(2-1):024504. PubMed ID: 36932513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization.
    Qiu Z; Shu J; He Y; Lin Z; Zhang K; Lv S; Tang D
    Biosens Bioelectron; 2017 Jan; 87():18-24. PubMed ID: 27504793
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme.
    Chen J; Zhang J; Guo Y; Li J; Fu F; Yang HH; Chen G
    Chem Commun (Camb); 2011 Jul; 47(28):8004-6. PubMed ID: 21670838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures.
    Cassinelli V; Oberleitner B; Sobotta J; Nickels P; Grossi G; Kempter S; Frischmuth T; Liedl T; Manetto A
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7795-8. PubMed ID: 25980669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags.
    Huang YY; Hsu HY; Huang CJ
    Biosens Bioelectron; 2007 Jan; 22(6):980-5. PubMed ID: 16759844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rolling circle amplification combined with nanoparticle aggregates for highly sensitive identification of DNA and cancer cells.
    Ding C; Wang N; Zhang J; Wang Z
    Biosens Bioelectron; 2013 Apr; 42():486-91. PubMed ID: 23238323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture".
    Massad-Ivanir N; Shtenberg G; Tzur A; Krepker MA; Segal E
    Anal Chem; 2011 May; 83(9):3282-9. PubMed ID: 21425788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.