These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels. Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223 [TBL] [Abstract][Full Text] [Related]
3. How absorbed hydrogen affects the catalytic activity of transition metals. Aleksandrov HA; Kozlov SM; Schauermann S; Vayssilov GN; Neyman KM Angew Chem Int Ed Engl; 2014 Dec; 53(49):13371-5. PubMed ID: 25294745 [TBL] [Abstract][Full Text] [Related]
4. Enhancing Hydrodeoxygenation of Bio-oil via Bimetallic Ni-V Catalysts Modified by Cross-Surface Migrated-Carbon from Biochar. Wu Y; Sun Y; Liang K; Yang Z; Tu R; Fan X; Cheng S; Yu H; Jiang E; Xu X ACS Appl Mater Interfaces; 2021 May; 13(18):21482-21498. PubMed ID: 33928779 [TBL] [Abstract][Full Text] [Related]
5. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation. Čelič TB; Grilc M; Likozar B; Tušar NN ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008 [TBL] [Abstract][Full Text] [Related]
6. Hydroxyacetone: A Glycerol-Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes. Sauter W; Bergmann OL; Schröder U ChemSusChem; 2017 Aug; 10(15):3105-3110. PubMed ID: 28643864 [TBL] [Abstract][Full Text] [Related]
7. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142 [TBL] [Abstract][Full Text] [Related]
8. Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles. Coll D; Delbecq F; Aray Y; Sautet P Phys Chem Chem Phys; 2011 Jan; 13(4):1448-56. PubMed ID: 21107469 [TBL] [Abstract][Full Text] [Related]
9. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity. Budi CS; Wu HC; Chen CS; Saikia D; Kao HM ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. Zheng M; Zhang J; Wang P; Jin H; Zheng Y; Qiao SZ Adv Mater; 2024 Apr; 36(14):e2307913. PubMed ID: 37756435 [TBL] [Abstract][Full Text] [Related]
11. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone. Gowda RR; Chen EY ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911 [TBL] [Abstract][Full Text] [Related]
12. Porous N-Doped Carbon-encapsulated Iron as Novel Catalyst Architecture for the Electrocatalytic Hydrogenation of Benzaldehyde. Pota F; Costa de Oliveira MA; Schröder C; Brunet Cabré M; Nolan H; Rafferty A; Jeannin O; Camerel F; Behan JA; Barrière F; Colavita PE ChemSusChem; 2024 Jul; ():e202400546. PubMed ID: 39037891 [TBL] [Abstract][Full Text] [Related]
13. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte. Qiu Y; Xin L; Li W Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708 [TBL] [Abstract][Full Text] [Related]
14. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity. Liu S; Zhang Q; Li Y; Han M; Gu L; Nan C; Bao J; Dai Z J Am Chem Soc; 2015 Mar; 137(8):2820-3. PubMed ID: 25626352 [TBL] [Abstract][Full Text] [Related]
15. Glucose- and cellulose-derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation. Kasakov S; Zhao C; Baráth E; Chase ZA; Fulton JL; Camaioni DM; Vjunov A; Shi H; Lercher JA Chemistry; 2015 Jan; 21(4):1567-77. PubMed ID: 25431188 [TBL] [Abstract][Full Text] [Related]
16. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Wang A; Zhang T Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609 [TBL] [Abstract][Full Text] [Related]
17. Electrocatalytic hydrogenation and deoxygenation of glucose on solid metal electrodes. Kwon Y; Koper MT ChemSusChem; 2013 Mar; 6(3):455-62. PubMed ID: 23345067 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Tran PD; Xi L; Batabyal SK; Wong LH; Barber J; Loo JS Phys Chem Chem Phys; 2012 Sep; 14(33):11596-9. PubMed ID: 22828930 [TBL] [Abstract][Full Text] [Related]
19. Functionalization of platinum nanoparticles with L-proline: simultaneous enhancements of catalytic activity and selectivity. Schrader I; Warneke J; Backenköhler J; Kunz S J Am Chem Soc; 2015 Jan; 137(2):905-12. PubMed ID: 25530504 [TBL] [Abstract][Full Text] [Related]
20. Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations. Fang H; Chen W; Li S; Li X; Duan X; Ye L; Yuan Y ChemSusChem; 2019 Dec; 12(23):5199-5206. PubMed ID: 31647183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]