BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 27337680)

  • 1. Electrocatalytic Hydrogenation of Oxygenates using Earth-Abundant Transition-Metal Nanoparticles under Mild Conditions.
    Carroll KJ; Burger T; Langenegger L; Chavez S; Hunt ST; Román-Leshkov Y; Brushett FR
    ChemSusChem; 2016 Aug; 9(15):1904-10. PubMed ID: 27337680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.
    Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How absorbed hydrogen affects the catalytic activity of transition metals.
    Aleksandrov HA; Kozlov SM; Schauermann S; Vayssilov GN; Neyman KM
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13371-5. PubMed ID: 25294745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Hydrodeoxygenation of Bio-oil via Bimetallic Ni-V Catalysts Modified by Cross-Surface Migrated-Carbon from Biochar.
    Wu Y; Sun Y; Liang K; Yang Z; Tu R; Fan X; Cheng S; Yu H; Jiang E; Xu X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21482-21498. PubMed ID: 33928779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation.
    Čelič TB; Grilc M; Likozar B; Tušar NN
    ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyacetone: A Glycerol-Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes.
    Sauter W; Bergmann OL; Schröder U
    ChemSusChem; 2017 Aug; 10(15):3105-3110. PubMed ID: 28643864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-organic frameworks as selectivity regulators for hydrogenation reactions.
    Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z
    Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles.
    Coll D; Delbecq F; Aray Y; Sautet P
    Phys Chem Chem Phys; 2011 Jan; 13(4):1448-56. PubMed ID: 21107469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts.
    Zheng M; Zhang J; Wang P; Jin H; Zheng Y; Qiao SZ
    Adv Mater; 2024 Apr; 36(14):e2307913. PubMed ID: 37756435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.
    Gowda RR; Chen EY
    ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity.
    Liu S; Zhang Q; Li Y; Han M; Gu L; Nan C; Bao J; Dai Z
    J Am Chem Soc; 2015 Mar; 137(8):2820-3. PubMed ID: 25626352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose- and cellulose-derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation.
    Kasakov S; Zhao C; Baráth E; Chase ZA; Fulton JL; Camaioni DM; Vjunov A; Shi H; Lercher JA
    Chemistry; 2015 Jan; 21(4):1567-77. PubMed ID: 25431188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocatalytic hydrogenation and deoxygenation of glucose on solid metal electrodes.
    Kwon Y; Koper MT
    ChemSusChem; 2013 Mar; 6(3):455-62. PubMed ID: 23345067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts.
    Tran PD; Xi L; Batabyal SK; Wong LH; Barber J; Loo JS
    Phys Chem Chem Phys; 2012 Sep; 14(33):11596-9. PubMed ID: 22828930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalization of platinum nanoparticles with L-proline: simultaneous enhancements of catalytic activity and selectivity.
    Schrader I; Warneke J; Backenköhler J; Kunz S
    J Am Chem Soc; 2015 Jan; 137(2):905-12. PubMed ID: 25530504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations.
    Fang H; Chen W; Li S; Li X; Duan X; Ye L; Yuan Y
    ChemSusChem; 2019 Dec; 12(23):5199-5206. PubMed ID: 31647183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.
    Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B
    ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.