BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 27337707)

  • 21. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: a pilot study.
    Naidu MU; Reddy BM; Yashmaina S; Patnaik AN; Rani PU
    Biomed Eng Online; 2005 Aug; 4():49. PubMed ID: 16115324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chest pulse-wave velocity: a novel approach to assess arterial stiffness.
    Solà J; Chételat O; Sartori C; Allemann Y; Rimoldi SF
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):215-23. PubMed ID: 20813631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis for the Influence of ABR Sensitivity on PTT-Based Cuff-Less Blood Pressure Estimation before and after Exercise.
    Xu Y; Ping P; Wang D; Zhang W
    J Healthc Eng; 2018; 2018():5396030. PubMed ID: 30402213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study.
    Shin H
    Psychophysiology; 2023 Feb; 60(2):e14173. PubMed ID: 36073769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An evaluation of a PTT-based method for noninvasive and cuffless estimation of arterial blood pressure.
    Teng XF; Zhang YT
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6049-52. PubMed ID: 17946738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of cuff-based and cuffless continuous blood pressure measurements in children and adolescents.
    Zachwieja J; Neyman-Bartkowiak A; Rabiega A; Wojciechowska M; Barabasz M; Musielak A; Silska-Dittmar M; Ostalska-Nowicka D
    Clin Exp Hypertens; 2020 Aug; 42(6):512-518. PubMed ID: 31941385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites.
    Butlin M; Shirbani F; Barin E; Tan I; Spronck B; Avolio AP
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2377-2383. PubMed ID: 29993392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Method for Continuous, Noninvasive, Cuff-Less Measurement of Blood Pressure: Evaluation in Patients With Nonalcoholic Fatty Liver Disease.
    Seeberg TM; Orr JG; Opsahl H; Austad HO; Roed MH; Dalgard SH; Houghton D; Jones DEJ; Strisland F
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1469-1478. PubMed ID: 28113242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of a new non-invasive blood pressure measurement method on mice via pulse wave propagation time measurement on a cuff.
    Nguyen XP; Kronemayer R; Herrmann P; Mejía A; Daw Z; Nguyen XD; Kränzlin B; Gretz N
    Biomed Tech (Berl); 2011 Jun; 56(3):153-8. PubMed ID: 21657988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introducing Contactless Blood Pressure Assessment Using a High Speed Video Camera.
    Jeong IC; Finkelstein J
    J Med Syst; 2016 Apr; 40(4):77. PubMed ID: 26791993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre-ejection period, the reason why the electrocardiogram Q-wave is an unreliable indicator of pulse wave initialization.
    Balmer J; Pretty C; Davidson S; Desaive T; Kamoi S; Pironet A; Morimont P; Janssen N; Lambermont B; Shaw GM; Chase JG
    Physiol Meas; 2018 Sep; 39(9):095005. PubMed ID: 30109991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of Real-Time Cuffless Blood Pressure Measurement Systems with ECG Electrodes and a Microphone Using Pulse Transit Time (PTT).
    Choi J; Kang Y; Park J; Joung Y; Koo C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients.
    Liu Q; Yan BP; Yu CM; Zhang YT; Poon CC
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):346-52. PubMed ID: 24158470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards using photo-plethysmogram amplitude to measure blood pressure during sleep.
    Chua EC; Redmond SJ; McDarby G; Heneghan C
    Ann Biomed Eng; 2010 Mar; 38(3):945-54. PubMed ID: 20049639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accuracy of 24-hour ambulatory blood pressure monitoring by a novel cuffless device in clinical practice.
    Krisai P; Vischer AS; Kilian L; Meienberg A; Mayr M; Burkard T
    Heart; 2019 Mar; 105(5):399-405. PubMed ID: 30228251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved pulse transit time estimation by system identification analysis of proximal and distal arterial waveforms.
    Xu D; Ryan KL; Rickards CA; Zhang G; Convertino VA; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2011 Oct; 301(4):H1389-95. PubMed ID: 21803948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.