BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27338253)

  • 1. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production.
    Man Z; Xu M; Rao Z; Guo J; Yang T; Zhang X; Xu Z
    Sci Rep; 2016 Jun; 6():28629. PubMed ID: 27338253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved L-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway.
    Shu Q; Xu M; Li J; Yang T; Zhang X; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):393-404. PubMed ID: 29728854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the transcription levels of argGH redistributed L-arginine metabolic flux in N-acetylglutamate kinase and ArgR-deregulated Corynebacterium crenatum.
    Zhao Q; Luo Y; Dou W; Zhang X; Zhang X; Zhang W; Xu M; Geng Y; Rao Z; Xu Z
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):55-66. PubMed ID: 26521658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H
    Man Z; Rao Z; Xu M; Guo J; Yang T; Zhang X; Xu Z
    Metab Eng; 2016 Nov; 38():310-321. PubMed ID: 27474351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of (L) -arginine production.
    Xu M; Rao Z; Yang J; Xia H; Dou W; Jin J; Xu Z
    J Ind Microbiol Biotechnol; 2012 Mar; 39(3):495-502. PubMed ID: 22009057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for L-arginine production.
    Park SH; Kim HU; Kim TY; Park JS; Kim SS; Lee SY
    Nat Commun; 2014 Aug; 5():4618. PubMed ID: 25091334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation.
    Xu M; Qin J; Rao Z; You H; Zhang X; Yang T; Wang X; Xu Z
    Microb Cell Fact; 2016 Jan; 15():15. PubMed ID: 26785743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply.
    Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase.
    Yang F; Xu J; Zhu Y; Wang Y; Xu M; Rao Z
    Microb Cell Fact; 2022 Jan; 21(1):16. PubMed ID: 35101042
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Zhang J; Qian F; Dong F; Wang Q; Yang J; Jiang Y; Yang S
    ACS Synth Biol; 2020 Jul; 9(7):1897-1906. PubMed ID: 32627539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum.
    Guo J; Man Z; Rao Z; Xu M; Yang T; Zhang X; Xu Z
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):443-451. PubMed ID: 28120129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in
    Kobayashi S; Kawaguchi H; Shirai T; Ninomiya K; Takahashi K; Kondo A; Tsuge Y
    ACS Synth Biol; 2020 Apr; 9(4):814-826. PubMed ID: 32202411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum.
    Xu M; Rao Z; Yang J; Dou W; Xu Z
    Curr Microbiol; 2013 Sep; 67(3):271-8. PubMed ID: 23559017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene.
    Takeno S; Hori K; Ohtani S; Mimura A; Mitsuhashi S; Ikeda M
    Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant.
    Xu M; Li J; Shu Q; Tang M; Zhang X; Yang T; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1155-1166. PubMed ID: 31203489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production.
    Lai S; Zhang Y; Liu S; Liang Y; Shang X; Chai X; Wen T
    Sci China Life Sci; 2012 Apr; 55(4):283-90. PubMed ID: 22566084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
    Dominguez H; Rollin C; Guyonvarch A; Guerquin-Kern JL; Cocaign-Bousquet M; Lindley ND
    Eur J Biochem; 1998 May; 254(1):96-102. PubMed ID: 9652400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
    Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q
    Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.