BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27338319)

  • 61. Affinity Purification of Methyllysine Proteome by Site-Specific Covalent Conjugation.
    Wang R; Huang M; Li L; Kaneko T; Voss C; Zhang L; Xia J; Li SSC
    Anal Chem; 2018 Dec; 90(23):13876-13881. PubMed ID: 30395435
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Directed immobilization of DNA-binding proteins on a cognate DNA-modified chip surface.
    Jeong EJ; Jeong YS; Park K; Yi SY; Ahn J; Chung SJ; Kim M; Chung BH
    J Biotechnol; 2008 May; 135(1):16-21. PubMed ID: 18395923
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity.
    Martin BR; Giepmans BN; Adams SR; Tsien RY
    Nat Biotechnol; 2005 Oct; 23(10):1308-14. PubMed ID: 16155565
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Direct and reversible immobilization and microcontact printing of functional proteins on glass using a genetically appended silica-binding tag.
    Coyle BL; Baneyx F
    Chem Commun (Camb); 2016 May; 52(43):7001-4. PubMed ID: 27157272
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oriented protein immobilization using covalent and noncovalent chemistry on a thiol-reactive self-reporting surface.
    Wasserberg D; Nicosia C; Tromp EE; Subramaniam V; Huskens J; Jonkheijm P
    J Am Chem Soc; 2013 Feb; 135(8):3104-11. PubMed ID: 23379762
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Direct and selective immobilization of proteins by means of an inorganic material-binding peptide: discussion on functionalization in the elongation to material-binding peptide.
    Yokoo N; Togashi T; Umetsu M; Tsumoto K; Hattori T; Nakanishi T; Ohara S; Takami S; Naka T; Abe H; Kumagai I; Adschiri T
    J Phys Chem B; 2010 Jan; 114(1):480-6. PubMed ID: 20000396
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins.
    Chen YX; Triola G; Waldmann H
    Acc Chem Res; 2011 Sep; 44(9):762-73. PubMed ID: 21648407
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Maleimide photolithography for single-molecule protein-protein interaction analysis in micropatterns.
    Waichman S; You C; Beutel O; Bhagawati M; Piehler J
    Anal Chem; 2011 Jan; 83(2):501-8. PubMed ID: 21186833
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A doubly responsive probe for the detection of Cys4-tagged proteins.
    Kotera N; Dubost E; Milanole G; Doris E; Gravel E; Arhel N; Brotin T; Dutasta JP; Cochrane J; Mari E; Boutin C; Léonce E; Berthault P; Rousseau B
    Chem Commun (Camb); 2015 Jul; 51(57):11482-4. PubMed ID: 26091539
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detection of Escherichia coli enoyl-ACP reductase using biarsenical-tetracysteine motif.
    Yang H; He J; Hu F; Zheng C; Yu Z
    Bioconjug Chem; 2010 Jul; 21(7):1341-8. PubMed ID: 20583783
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Manufacturing of Protein-Based Biomaterials Coupling Cell-Free Protein Synthesis with Protein Immobilization.
    López-Gallego F; Benítez-Mateos AI
    Methods Mol Biol; 2020; 2100():335-343. PubMed ID: 31939134
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures.
    Engin S; Trouillet V; Franz CM; Welle A; Bruns M; Wedlich D
    Langmuir; 2010 May; 26(9):6097-101. PubMed ID: 20369837
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions of AsCy3 with cysteine-rich peptides.
    Alexander SC; Schepartz A
    Org Lett; 2014 Jul; 16(14):3824-7. PubMed ID: 24999741
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Clickable cellulosic surfaces for peptide-based bioassays.
    Odinolfi MT; Romanato A; Bergamaschi G; Strada A; Sola L; Girella A; Milanese C; Chiari M; Gori A; Cretich M
    Talanta; 2019 Dec; 205():120152. PubMed ID: 31450458
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fluorescence-based peptide screening using ligand peptides directly conjugated to a thiolated glass surface.
    Lim CH; Cho HM; Choo J; Neff S; Jungbauer A; Kumada Y; Katoh S; Lee EK
    Biomed Microdevices; 2009 Jun; 11(3):663-9. PubMed ID: 19142733
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CrAsH-quantum dot nanohybrids for smart targeting of proteins.
    Genin E; Carion O; Mahler B; Dubertret B; Arhel N; Charneau P; Doris E; Mioskowski C
    J Am Chem Soc; 2008 Jul; 130(27):8596-7. PubMed ID: 18549203
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles.
    Wang M; Lei C; Nie Z; Guo M; Huang Y; Yao S
    Talanta; 2013 Nov; 116():468-73. PubMed ID: 24148431
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Manufacturing of Peptide Microarrays Based on Catalyst-Free Click Chemistry.
    Prim D; Pfeifer ME
    Methods Mol Biol; 2016; 1352():157-66. PubMed ID: 26490474
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dynamic fluorescent imaging of human immunodeficiency virus type 1 gag in live cells by biarsenical labeling.
    Rudner L; Nydegger S; Coren LV; Nagashima K; Thali M; Ott DE
    J Virol; 2005 Apr; 79(7):4055-65. PubMed ID: 15767407
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Detection of oligonucleotides by PNA-peptide conjugates recognizing the biarsenical fluorescein complex FlAsH-EDT
    Piras L; Avitabile C; D'Andrea LD; Saviano M; Romanelli A
    Biochem Biophys Res Commun; 2017 Nov; 493(1):126-131. PubMed ID: 28919425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.