BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 27338360)

  • 21. Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment.
    Lv X; Ma X; Hu Y
    Expert Opin Drug Discov; 2013 Aug; 8(8):991-1012. PubMed ID: 23668243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective Efficacy of Temsirolimus on Bone Metastases in Chromophobe Renal Cell Carcinoma.
    Huelsmann L; Kim DNW; Hannan R; Watumull LM; Brugarolas J
    Clin Genitourin Cancer; 2015 Aug; 13(4):e321-e323. PubMed ID: 25620636
    [No Abstract]   [Full Text] [Related]  

  • 23. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma.
    Ghosh AP; Marshall CB; Coric T; Shim EH; Kirkman R; Ballestas ME; Ikura M; Bjornsti MA; Sudarshan S
    Oncotarget; 2015 Jul; 6(20):17895-910. PubMed ID: 26255626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting mTOR globally in cancer: thinking beyond rapamycin.
    Shor B; Gibbons JJ; Abraham RT; Yu K
    Cell Cycle; 2009 Dec; 8(23):3831-7. PubMed ID: 19901542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Everolimus for the treatment of advanced renal cell carcinoma.
    Amato R
    Expert Opin Pharmacother; 2011 May; 12(7):1143-55. PubMed ID: 21470068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promise of rapalogues versus mTOR kinase inhibitors in subset specific breast cancer: old targets new hope.
    De P; Miskimins K; Dey N; Leyland-Jones B
    Cancer Treat Rev; 2013 Aug; 39(5):403-12. PubMed ID: 23352077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin.
    Yu K; Toral-Barza L; Shi C; Zhang WG; Lucas J; Shor B; Kim J; Verheijen J; Curran K; Malwitz DJ; Cole DC; Ellingboe J; Ayral-Kaloustian S; Mansour TS; Gibbons JJ; Abraham RT; Nowak P; Zask A
    Cancer Res; 2009 Aug; 69(15):6232-40. PubMed ID: 19584280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Updates of mTOR inhibitors.
    Zhou H; Luo Y; Huang S
    Anticancer Agents Med Chem; 2010 Sep; 10(7):571-81. PubMed ID: 20812900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations.
    Moschetta M; Reale A; Marasco C; Vacca A; Carratù MR
    Br J Pharmacol; 2014 Aug; 171(16):3801-13. PubMed ID: 24780124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compensatory Increase of Transglutaminase 2 Is Responsible for Resistance to mTOR Inhibitor Treatment.
    Cao J; Huang W
    PLoS One; 2016; 11(2):e0149388. PubMed ID: 26872016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current treatment strategies for inhibiting mTOR in cancer.
    Chiarini F; Evangelisti C; McCubrey JA; Martelli AM
    Trends Pharmacol Sci; 2015 Feb; 36(2):124-35. PubMed ID: 25497227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Future perspectives for mTOR inhibitors in renal cell cancer treatment.
    Czarnecka AM; Kornakiewicz A; Lian F; Szczylik C
    Future Oncol; 2015; 11(5):801-17. PubMed ID: 25757683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic mammalian target of rapamycin inhibitors as antineoplastic agents.
    Mohindra NA; Platanias LC
    Leuk Lymphoma; 2015; 56(9):2518-23. PubMed ID: 25747970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An mTOR kinase inhibitor slows disease progression in a rat model of polycystic kidney disease.
    Ravichandran K; Zafar I; Ozkok A; Edelstein CL
    Nephrol Dial Transplant; 2015 Jan; 30(1):45-53. PubMed ID: 25239638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Enigma of Rapamycin Dosage.
    Mukhopadhyay S; Frias MA; Chatterjee A; Yellen P; Foster DA
    Mol Cancer Ther; 2016 Mar; 15(3):347-53. PubMed ID: 26916116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma.
    Fan Q; Aksoy O; Wong RA; Ilkhanizadeh S; Novotny CJ; Gustafson WC; Truong AY; Cayanan G; Simonds EF; Haas-Kogan D; Phillips JJ; Nicolaides T; Okaniwa M; Shokat KM; Weiss WA
    Cancer Cell; 2017 Mar; 31(3):424-435. PubMed ID: 28292440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Steady-state kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes.
    Tao Z; Barker J; Shi SD; Gehring M; Sun S
    Biochemistry; 2010 Oct; 49(39):8488-98. PubMed ID: 20804212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs).
    Feldman ME; Shokat KM
    Curr Top Microbiol Immunol; 2010; 347():241-62. PubMed ID: 20549474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapamycin passes the torch: a new generation of mTOR inhibitors.
    Benjamin D; Colombi M; Moroni C; Hall MN
    Nat Rev Drug Discov; 2011 Oct; 10(11):868-80. PubMed ID: 22037041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. mTORC1 inhibitors suppress meningioma growth in mouse models.
    Pachow D; Andrae N; Kliese N; Angenstein F; Stork O; Wilisch-Neumann A; Kirches E; Mawrin C
    Clin Cancer Res; 2013 Mar; 19(5):1180-9. PubMed ID: 23406776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.