BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 27338422)

  • 1. A Review on the Valorization of Macroalgal Wastes for Biomethane Production.
    Barbot YN; Al-Ghaili H; Benz R
    Mar Drugs; 2016 Jun; 14(6):. PubMed ID: 27338422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-Acidic Pretreatment of Beach Macroalgae from Rügen to Optimize Biomethane Production--Double Benefit with Simultaneous Bioenergy Production and Improvement of Local Beach and Waste Management.
    Barbot YN; Thomsen L; Benz R
    Mar Drugs; 2015 Sep; 13(9):5681-705. PubMed ID: 26404327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production.
    Bucholc K; Szymczak-Żyła M; Lubecki L; Zamojska A; Hapter P; Tjernström E; Kowalewska G
    Sci Total Environ; 2014 Mar; 473-474():298-307. PubMed ID: 24374591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview on biofuels production in a seaweed biorefinery.
    Soares Dias AP; Rijo B; Santos F; Galhano Dos Santos R; Frade T
    Sci Total Environ; 2023 Aug; 884():163714. PubMed ID: 37100156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine macroalgae: an untapped resource for producing fuels and chemicals.
    Wei N; Quarterman J; Jin YS
    Trends Biotechnol; 2013 Feb; 31(2):70-7. PubMed ID: 23245657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation.
    Ganesh Saratale R; Kumar G; Banu R; Xia A; Periyasamy S; Dattatraya Saratale G
    Bioresour Technol; 2018 Aug; 262():319-332. PubMed ID: 29576518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent trends on seaweed fractionation for liquid biofuels production.
    Del Río PG; Gomes-Dias JS; Rocha CMR; Romaní A; Garrote G; Domingues L
    Bioresour Technol; 2020 Mar; 299():122613. PubMed ID: 31870706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.
    Colazo AB; Sánchez A; Font X; Colón J
    Waste Manag; 2015 Sep; 43():84-97. PubMed ID: 26123979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine macroalgae in a circular economy context: A comprehensive analysis focused on residual biomass.
    Pardilhó S; Cotas J; Pereira L; Oliveira MB; Dias JM
    Biotechnol Adv; 2022 Nov; 60():107987. PubMed ID: 35605758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of marine macroalgae
    Sebök S; Brockhagen B; Storck JL; Post IB; Bache T; Korchev R; Böttjer R; Grothe T; Ehrmann A
    Environ Technol; 2022 Apr; 43(9):1340-1351. PubMed ID: 32975476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensiling of seaweed for a seaweed biofuel industry.
    Herrmann C; FitzGerald J; O'Shea R; Xia A; O'Kiely P; Murphy JD
    Bioresour Technol; 2015 Nov; 196():301-13. PubMed ID: 26253914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry.
    Tabassum MR; Wall DM; Murphy JD
    Bioresour Technol; 2016 Nov; 219():228-238. PubMed ID: 27494104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis.
    Hilaire F; Basset E; Bayard R; Gallardo M; Thiebaut D; Vial J
    J Chromatogr A; 2017 Nov; 1524():222-232. PubMed ID: 28992991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogas production from Pongamia biomass wastes and a model to estimate biodegradability from their composition.
    Gunaseelan VN
    Waste Manag Res; 2014 Feb; 32(2):131-9. PubMed ID: 24519227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production.
    Yazdani P; Zamani A; Karimi K; Taherzadeh MJ
    Bioresour Technol; 2015 Jan; 176():196-202. PubMed ID: 25461003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentials of macroalgae as feedstocks for biorefinery.
    Jung KA; Lim SR; Kim Y; Park JM
    Bioresour Technol; 2013 May; 135():182-90. PubMed ID: 23186669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioextraction potential of seaweed in Denmark - An instrument for circular nutrient management.
    Seghetta M; Tørring D; Bruhn A; Thomsen M
    Sci Total Environ; 2016 Sep; 563-564():513-29. PubMed ID: 27152993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogas production from residual marine macroalgae biomass: Kinetic modelling approach.
    Pardilhó S; Pires JC; Boaventura R; Almeida M; Maia Dias J
    Bioresour Technol; 2022 Sep; 359():127473. PubMed ID: 35714781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.
    Styles D; Dominguez EM; Chadwick D
    Sci Total Environ; 2016 Aug; 560-561():241-53. PubMed ID: 27101461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future.
    Pravin R; Baskar G; Rokhum SL; Pugazhendhi A
    Chemosphere; 2023 Oct; 339():139724. PubMed ID: 37541444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.