BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 27339980)

  • 1. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase.
    Verba KA; Wang RY; Arakawa A; Liu Y; Shirouzu M; Yokoyama S; Agard DA
    Science; 2016 Jun; 352(6293):1542-7. PubMed ID: 27339980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of an Hsp90-Cdc37-Cdk4 complex.
    Vaughan CK; Gohlke U; Sobott F; Good VM; Ali MM; Prodromou C; Robinson CV; Saibil HR; Pearl LH
    Mol Cell; 2006 Sep; 23(5):697-707. PubMed ID: 16949366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4.
    Stepanova L; Leng X; Parker SB; Harper JW
    Genes Dev; 1996 Jun; 10(12):1491-502. PubMed ID: 8666233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90-Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation.
    Stetz G; Verkhivker GM
    J Chem Inf Model; 2018 Feb; 58(2):405-421. PubMed ID: 29432007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37.
    Keramisanou D; Aboalroub A; Zhang Z; Liu W; Marshall D; Diviney A; Larsen RW; Landgraf R; Gelis I
    Mol Cell; 2016 Apr; 62(2):260-271. PubMed ID: 27105117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins.
    Smith JR; de Billy E; Hobbs S; Powers M; Prodromou C; Pearl L; Clarke PA; Workman P
    Oncogene; 2015 Jan; 34(1):15-26. PubMed ID: 24292678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural dynamics of RAF1-HSP90-CDC37 and HSP90 complexes reveal asymmetric client interactions and key structural elements.
    Finci LI; Chakrabarti M; Gulten G; Finney J; Grose C; Fox T; Yang R; Nissley DV; McCormick F; Esposito D; Balius TE; Simanshu DK
    Commun Biol; 2024 Mar; 7(1):260. PubMed ID: 38431713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the RAF1-HSP90-CDC37 complex reveals the basis of RAF1 regulation.
    García-Alonso S; Mesa P; Ovejero LP; Aizpurua G; Lechuga CG; Zarzuela E; Santiveri CM; Sanclemente M; Muñoz J; Musteanu M; Campos-Olivas R; Martínez-Torrecuadrada J; Barbacid M; Montoya G
    Mol Cell; 2022 Sep; 82(18):3438-3452.e8. PubMed ID: 36055235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K
    J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37.
    Prince T; Matts RL
    J Biol Chem; 2004 Sep; 279(38):39975-81. PubMed ID: 15258137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy.
    Sreeramulu S; Jonker HR; Langer T; Richter C; Lancaster CR; Schwalbe H
    J Biol Chem; 2009 Feb; 284(6):3885-96. PubMed ID: 19073599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A.
    Grover A; Shandilya A; Agrawal V; Pratik P; Bhasme D; Bisaria VS; Sundar D
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S30. PubMed ID: 21342561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of celastrol to inhibit hsp90 and cdc37 interaction.
    Zhang T; Li Y; Yu Y; Zou P; Jiang Y; Sun D
    J Biol Chem; 2009 Dec; 284(51):35381-9. PubMed ID: 19858214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a conserved sequence motif that promotes Cdc37 and cyclin D1 binding to Cdk4.
    Zhao Q; Boschelli F; Caplan AJ; Arndt KT
    J Biol Chem; 2004 Mar; 279(13):12560-4. PubMed ID: 14701845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System.
    Hallett ST; Pastok MW; Morgan RML; Wittner A; Blundell KLIM; Felletar I; Wedge SR; Prodromou C; Noble MEM; Pearl LH; Endicott JA
    Cell Rep; 2017 Oct; 21(5):1386-1398. PubMed ID: 29091774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks.
    Stetz G; Astl L; Verkhivker GM
    J Chem Theory Comput; 2020 Jul; 16(7):4706-4725. PubMed ID: 32492340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches.
    Verba KA; Agard DA
    Trends Biochem Sci; 2017 Oct; 42(10):799-811. PubMed ID: 28784328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics.
    Jinwal UK; Trotter JH; Abisambra JF; Koren J; Lawson LY; Vestal GD; O'Leary JC; Johnson AG; Jin Y; Jones JR; Li Q; Weeber EJ; Dickey CA
    J Biol Chem; 2011 May; 286(19):16976-83. PubMed ID: 21367866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.