These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27340036)

  • 1. Strain rate dependent behavior of the porcine spinal cord under transverse dynamic compression.
    Fradet L; Cliche F; Petit Y; Mac-Thiong JM; Arnoux PJ
    Proc Inst Mech Eng H; 2016 Sep; 230(9):858-866. PubMed ID: 27340036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading.
    Rycman A; McLachlin S; Cronin DS
    Front Bioeng Biotechnol; 2021; 9():693120. PubMed ID: 34458242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.
    Ramo NL; Shetye SS; Streijger F; Lee JHT; Troyer KL; Kwon BK; Cripton P; Puttlitz CM
    Acta Biomater; 2018 Mar; 68():78-89. PubMed ID: 29288084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression behavior of porcine spinal cord white matter.
    Sparrey CJ; Keaveny TM
    J Biomech; 2011 Apr; 44(6):1078-82. PubMed ID: 21353225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear viscoelastic characterization of the porcine spinal cord.
    Shetye SS; Troyer KL; Streijger F; Lee JH; Kwon BK; Cripton PA; Puttlitz CM
    Acta Biomater; 2014 Feb; 10(2):792-7. PubMed ID: 24211612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of the human spinal cord under the compressive loading.
    Karimi A; Shojaei A; Tehrani P
    J Chem Neuroanat; 2017 Dec; 86():15-18. PubMed ID: 28720407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of spinal cord grey matter and white matter in confined compression.
    Yu J; Manouchehri N; Yamamoto S; Kwon BK; Oxland TR
    J Mech Behav Biomed Mater; 2020 Dec; 112():104044. PubMed ID: 32947099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load.
    Jannesar S; Nadler B; Sparrey CJ
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical properties of the human cervical spinal cord in vitro.
    Bilston LE; Thibault LE
    Ann Biomed Eng; 1996; 24(1):67-74. PubMed ID: 8669719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.
    Tüfekci K; Kayacan R; Kurbanoğlu C
    J Mech Behav Biomed Mater; 2014 Jun; 34():231-42. PubMed ID: 24607761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges.
    Sudres P; Evin M; Wagnac E; Bailly N; Diotalevi L; Melot A; Arnoux PJ; Petit Y
    J Mech Behav Biomed Mater; 2021 Mar; 115():104280. PubMed ID: 33395616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of flash freezing on variability in spinal cord compression behavior.
    Sparrey CJ; Keaveny TM
    J Biomech Eng; 2009 Nov; 131(11):111010. PubMed ID: 20353261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel spinal cord surrogate for the study of compressive traumatic spinal cord injuries
    Diotalevi L; Petit Y; Peyrache LM; Facchinello Y; Mac-Thiong JM; Wagnac E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5678-5680. PubMed ID: 31947141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior.
    Troyer KL; Puttlitz CM
    Acta Biomater; 2011 Feb; 7(2):700-9. PubMed ID: 20831909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis.
    Li XF; Dai LY
    Spine (Phila Pa 1976); 2009 May; 34(11):1140-7. PubMed ID: 19444060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.