These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 2734004)
1. Effects of pH and light exposure on the riboflavin-binding capacity in the rat lens. Hirano H; Horiuchi S; Ono S Ophthalmic Res; 1989; 21(2):93-6. PubMed ID: 2734004 [TBL] [Abstract][Full Text] [Related]
2. Effects of ultraviolet B irradiation on lenticular riboflavin metabolism and high-molecular-weight-protein aggregation. Hirano H; Obara Y; Katakura K; Ono S Ophthalmic Res; 1990; 22(3):183-6. PubMed ID: 2385434 [TBL] [Abstract][Full Text] [Related]
3. Studies on the riboflavin-binding capacity of the rat lens. Hirano H; Hamajima S; Niitsu Y; Oikawa K; Ono S Int J Vitam Nutr Res; 1983; 53(3):243-50. PubMed ID: 6629663 [TBL] [Abstract][Full Text] [Related]
4. Riboflavin status and photo-induced riboflavin binding to the proteins of the rat ocular lens. Salim-Hanna M; Valenzuela A; Silva E Int J Vitam Nutr Res; 1988; 58(1):61-5. PubMed ID: 3384586 [TBL] [Abstract][Full Text] [Related]
5. Riboflavin metabolism in the single lens of rat. Ono S; Hirano H Ophthalmic Res; 1983; 15(3):140-5. PubMed ID: 6634050 [TBL] [Abstract][Full Text] [Related]
6. Photosensitized acceleration of riboflavin on the formation of lenticular HMW-protein aggregation. Ono S; Hirano H Int J Vitam Nutr Res; 1987; 57(4):401-3. PubMed ID: 3440715 [TBL] [Abstract][Full Text] [Related]
7. Effects of riboflavin deficiency on the synthesis of ester forms of riboflavin in the rat lens. Ono S; Hirano H; Hamajima S; Horiuchi S J Nutr Sci Vitaminol (Tokyo); 1981; 27(6):599-604. PubMed ID: 6801226 [No Abstract] [Full Text] [Related]
8. Effects of dexamethasone phosphate on the formation of ester forms of riboflavin in the lens. Ono S; Shimizu S; Takahashi H; Hirano H Ophthalmic Res; 1986; 18(5):279-81. PubMed ID: 3808593 [TBL] [Abstract][Full Text] [Related]
9. Effects of aging on the formation of ester forms of riboflavin in the rat lens. Ono S; Oikawa K; Hirano H; Obara Y Int J Vitam Nutr Res; 1986; 56(3):259-62. PubMed ID: 3781750 [TBL] [Abstract][Full Text] [Related]
10. A light-induced tryptophan-riboflavin binding: biological implications. Silva E; Salim-Hanna M; Edwards AM; Becker MI; De Ioannes AE Adv Exp Med Biol; 1991; 289():33-48. PubMed ID: 1897400 [TBL] [Abstract][Full Text] [Related]
11. Effects of B2-deficiency on lipoperoxide and its scavenging system in the rat lens. Hirano H; Hamajima S; Horiuchi S; Niitsu Y; Ono S Int J Vitam Nutr Res; 1983; 53(4):377-82. PubMed ID: 6421765 [TBL] [Abstract][Full Text] [Related]
12. Localization of riboflavin metabolism in the lens. Hirano H; Itho H; Ono S Int J Vitam Nutr Res; 1989; 59(4):421-2. PubMed ID: 2634051 [No Abstract] [Full Text] [Related]
13. Role of hydrogen peroxide in riboflavin-sensitized photodynamic damage to cultured rat lenses. Jernigan HM Exp Eye Res; 1985 Jul; 41(1):121-9. PubMed ID: 4029283 [TBL] [Abstract][Full Text] [Related]
14. Riboflavin-photosensitized anaerobic modification of rat lens proteins. A correlation with age-related changes. Ugarte R; Edwards AM; Diez MS; Valenzuela A; Silva E J Photochem Photobiol B; 1992 Apr; 13(2):161-8. PubMed ID: 1506988 [TBL] [Abstract][Full Text] [Related]
15. Effects of ethanol on the riboflavin metabolism in the lens. Ono S; Hirano H Int J Vitam Nutr Res; 1987; 57(1):106. PubMed ID: 3583590 [No Abstract] [Full Text] [Related]
16. Direct measurement of pH in the rat lens by ion-sensitive microelectrodes. Bassnett S; Duncan G Exp Eye Res; 1985 Apr; 40(4):585-90. PubMed ID: 4007073 [TBL] [Abstract][Full Text] [Related]
17. Formation of ester forms of riboflavin in the pituitary gland of rat. Ono S; Oikawa K; Miyata S; Hirano H Int J Vitam Nutr Res; 1985; 55(3):275-9. PubMed ID: 4077399 [TBL] [Abstract][Full Text] [Related]
18. Effect of riboflavin deficiency on the 32P turnover in the macromolecular phosphate compounds of the rat lens. Ono S; Hirano H; Ono M; Nagato K; Obara K Int J Vitam Nutr Res; 1977; 47(4):345-8. PubMed ID: 591204 [TBL] [Abstract][Full Text] [Related]
19. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins. Anbaraki A; Khoshaman K; Ghasemi Y; Yousefi R Int J Biol Macromol; 2016 Oct; 91():895-904. PubMed ID: 27316765 [TBL] [Abstract][Full Text] [Related]
20. Photodynamic effects of rose bengal or riboflavin on carrier-mediated transport systems in rat lens. Jernigan HM; Fukui HN; Goosey JD; Kinoshita JH Exp Eye Res; 1981 Apr; 32(4):461-6. PubMed ID: 7238630 [No Abstract] [Full Text] [Related] [Next] [New Search]