BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27340110)

  • 1. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration.
    Naranda J; Sušec M; Maver U; Gradišnik L; Gorenjak M; Vukasović A; Ivković A; Rupnik MS; Vogrin M; Krajnc P
    Sci Rep; 2016 Jun; 6():28695. PubMed ID: 27340110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage.
    Tanaka Y; Yamaoka H; Nishizawa S; Nagata S; Ogasawara T; Asawa Y; Fujihara Y; Takato T; Hoshi K
    Biomaterials; 2010 Jun; 31(16):4506-16. PubMed ID: 20206380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering.
    Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D
    J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of chitosan/poly(l-lactide)/pectin based composite scaffolds for cartilage tissue regeneration.
    Mallick SP; Singh BN; Rastogi A; Srivastava P
    Int J Biol Macromol; 2018 Jun; 112():909-920. PubMed ID: 29438752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel phase separated polycaprolactone/collagen scaffolds for cartilage tissue engineering.
    Munir N; Callanan A
    Biomed Mater; 2018 Jun; 13(5):051001. PubMed ID: 29848797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospinning of highly porous scaffolds for cartilage regeneration.
    Thorvaldsson A; Stenhamre H; Gatenholm P; Walkenström P
    Biomacromolecules; 2008 Mar; 9(3):1044-9. PubMed ID: 18260633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry.
    Oseni AO; Butler PE; Seifalian AM
    J Tissue Eng Regen Med; 2015 Nov; 9(11):E27-38. PubMed ID: 23576328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering.
    Chang KY; Hung LH; Chu IM; Ko CS; Lee YD
    J Biomed Mater Res A; 2010 Feb; 92(2):712-23. PubMed ID: 19274722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes.
    Jeong CG; Hollister SJ
    Biomaterials; 2010 May; 31(15):4304-12. PubMed ID: 20219243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial effect of hydrophilized porous polymer scaffolds in tissue-engineered cartilage formation.
    Ju YM; Park K; Son JS; Kim JJ; Rhie JW; Han DK
    J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):252-60. PubMed ID: 17973245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies on process engineering of chondrocyte culture for cartilage tissue regeneration.
    Mallick SP; Rastogi A; Tripathi S; Srivastava P
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):601-610. PubMed ID: 27995334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-polylactic acid porous microspheres enhance the mechanical properties and in vivo stability of degummed silk/silk fibroin/gelatin scaffold.
    Li T; Liu B; Jiang Y; Lou Y; Chen K; Zhang D
    Biomed Mater; 2020 Dec; 16(1):015025. PubMed ID: 33181491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology.
    Wang CC; Yang KC; Lin KH; Liu HC; Lin FH
    Biomaterials; 2011 Oct; 32(29):7118-26. PubMed ID: 21724248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.