BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27340346)

  • 1. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels.
    Pircher N; Carbajal L; Schimper C; Bacher M; Rennhofer H; Nedelec JM; Lichtenegger HC; Rosenau T; Liebner F
    Cellulose (Lond); 2016; 23():1949-1966. PubMed ID: 27340346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H
    Schimper CB; Pachschwoell PS; Hettegger H; Neouze MA; Nedelec JM; Wendland M; Rosenau T; Liebner F
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32272769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton.
    Edwards JV; Fontenot KR; Prevost NT; Pircher N; Liebner F; Condon BD
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.
    Pircher N; Veigel S; Aigner N; Nedelec JM; Rosenau T; Liebner F
    Carbohydr Polym; 2014 Oct; 111(100):505-13. PubMed ID: 25037381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.
    Rege A; Schestakow M; Karadagli I; Ratke L; Itskov M
    Soft Matter; 2016 Sep; 12(34):7079-88. PubMed ID: 27487115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Morphology of Poly(ether ether ketone) Aerogels.
    Talley SJ; Vivod SL; Nguyen BA; Meador MAB; Radulescu A; Moore RB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31508-31519. PubMed ID: 31379150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Biopolymer Aerogels Using Green Solvents.
    Subrahmanyam R; Gurikov P; Meissner I; Smirnova I
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose-silica aerogels.
    Demilecamps A; Beauger C; Hildenbrand C; Rigacci A; Budtova T
    Carbohydr Polym; 2015 May; 122():293-300. PubMed ID: 25817671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices.
    Yu S; Budtova T
    Carbohydr Polym; 2024 May; 332():121925. PubMed ID: 38431419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging.
    de Oliveira JP; Bruni GP; El Halal SLM; Bertoldi FC; Dias ARG; Zavareze EDR
    Int J Biol Macromol; 2019 Mar; 124():175-184. PubMed ID: 30471399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Sodium Montmorillonite on the Preparation and Properties of Cellulose Aerogels.
    Long LY; Li FF; Weng YX; Wang YZ
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates.
    Liu S; Yan Q; Tao D; Yu T; Liu X
    Carbohydr Polym; 2012 Jun; 89(2):551-7. PubMed ID: 24750757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the nanostructure of anisotropic cellulose aerogels upon compression.
    Rennhofer H; Plappert SF; Lichtenegger HC; Bernstorff S; Fitzka M; Nedelec JM; Liebner FW
    Soft Matter; 2019 Oct; 15(41):8372-8380. PubMed ID: 31588953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Gelation Techniques for the Fabrication of Cellulose Aerogels.
    Menshutina N; Fedotova O; Trofimova K; Tsygankov P
    Gels; 2023 Nov; 9(12):. PubMed ID: 38131905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
    Fu J; Wang S; He C; Lu Z; Huang J; Chen Z
    Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of cellulose aerogels and cryogels.
    Buchtová N; Pradille C; Bouvard JL; Budtova T
    Soft Matter; 2019 Oct; 15(39):7901-7908. PubMed ID: 31535679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Mechanical Stability and Hydrophobicity of Cellulose Aerogels via Quantitative Doping of Nano-Lignin.
    Wang X; Yang X; Wu Z; Liu X; Li Q; Zhu W; Jiang Y; Hu L
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability.
    Pinto SC; Gonçalves G; Sandoval S; López-Periago AM; Borras A; Domingo C; Tobias G; Duarte I; Vicente R; Marques PAAP
    Carbohydr Polym; 2020 Feb; 230():115598. PubMed ID: 31887938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerogels from Chitosan Solutions in Ionic Liquids.
    Santos-López G; Argüelles-Monal W; Carvajal-Millan E; López-Franco YL; Recillas-Mota MT; Lizardi-Mendoza J
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.