These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27340380)

  • 1. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres.
    Derkachova A; Kolwas K; Demchenko I
    Plasmonics; 2016; 11():941-951. PubMed ID: 27340380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons.
    Kolwas K; Derkachova A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Coherent Dynamics of Localized Surface Plasmons in Gold and Silver Nanospheres; Large Size Effects.
    Kolwas K
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized and propagating plasmons in metal films with nanoholes.
    Schwind M; Kasemo B; Zorić I
    Nano Lett; 2013 Apr; 13(4):1743-50. PubMed ID: 23484456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry.
    Brown AM; Sundararaman R; Narang P; Goddard WA; Atwater HA
    ACS Nano; 2016 Jan; 10(1):957-66. PubMed ID: 26654729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of interband transitions on Faraday rotation in metallic nanoparticles.
    Wysin GM; Chikan V; Young N; Dani RK
    J Phys Condens Matter; 2013 Aug; 25(32):325302. PubMed ID: 23846610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature.
    Alabastri A; Tuccio S; Giugni A; Toma A; Liberale C; Das G; Angelis F; Fabrizio ED; Zaccaria RP
    Materials (Basel); 2013 Oct; 6(11):4879-4910. PubMed ID: 28788366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Size Dependence of Quantum Plasmon of Charged Gold Nanoparticles.
    Ma S; Yang DJ; Ding SJ; Liu J; Wang W; Wu ZY; Liu XD; Zhou L; Wang QQ
    Phys Rev Lett; 2021 Apr; 126(17):173902. PubMed ID: 33988417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the temperature-dependent dielectric constant on the photoacoustic effect of gold nanospheres.
    Sun JP; Ren YT; Gao RX; Gao BH; He MJ; Qi H
    Phys Chem Chem Phys; 2022 Dec; 24(48):29667-29682. PubMed ID: 36453140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bandwidth of quantized surface plasmons: competition between radiative and nonradiative damping effects.
    Moustafa S; Zayed MK; Ahmed M; Fares H
    Phys Chem Chem Phys; 2024 Jan; 26(3):1994-2006. PubMed ID: 38116761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drastic reduction of plasmon damping in gold nanorods.
    Sönnichsen C; Franzl T; Wilk T; von Plessen G; Feldmann J; Wilson O; Mulvaney P
    Phys Rev Lett; 2002 Feb; 88(7):077402. PubMed ID: 11863939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Model for Determination of Size-Distribution of Colloidal Silver Nanoparticles from Surface Plasmon Resonance Wavelength and Dielectric Functions.
    Car J; Krstulović N
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing materials for plasmonic systems: the alkali-noble intermetallics.
    Blaber MG; Arnold MD; Ford MJ
    J Phys Condens Matter; 2010 Mar; 22(9):095501. PubMed ID: 21389416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous localized surface plasmon resonance inflection points for enhanced sensitivity and tracking plasmon damping in single gold bipyramids.
    Tsalu PV; Kim GW; Hong JW; Ha JW
    Nanoscale; 2018 Jul; 10(26):12554-12563. PubMed ID: 29932189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear optical detection of proteins based on localized surface plasmons in surface immobilized gold nanospheres.
    Fukuba SY; Tsuboi K; Abe S; Kajikawa K
    Langmuir; 2008 Aug; 24(15):8367-72. PubMed ID: 18570447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.