These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27340498)

  • 1. The role of alkyl substituents in deazaadenine-based diarylethene photoswitches.
    Sarter C; Heimes M; Jäschke A
    Beilstein J Org Chem; 2016; 12():1103-10. PubMed ID: 27340498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aza-Diarylethenes Undergoing Both Photochemically and Thermally Reversible Electrocyclic Reactions.
    Hamatani S; Kitagawa D; Kobatake S
    Angew Chem Int Ed Engl; 2024 Dec; 63(51):e202414121. PubMed ID: 39198686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diarylethene Photoswitches Undergoing 6π Azaelectrocyclic Reaction: Disrotatory Thermal Cycloreversion of the Closed-Ring Isomer.
    Hamatani S; Kitagawa D; Kobatake S
    J Phys Chem Lett; 2023 Sep; 14(37):8277-8280. PubMed ID: 37676689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoswitchable Fluorescent Diarylethene Derivatives with Thiophene 1,1-Dioxide Groups: Effect of Alkyl Substituents at the Reactive Carbons.
    Morimoto M; Sumi T; Irie M
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally reversible photochromism of dipyrrolylethenes.
    Inaba K; Iwai R; Morimoto M; Irie M
    Photochem Photobiol Sci; 2019 Sep; 18(9):2136-2141. PubMed ID: 30724305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoside-Based Diarylethene Photoswitches: Synthesis and Photochromic Properties.
    Wang HX; Xi DD; Xie MS; Wang HX; Qu GR; Guo HM
    Chembiochem; 2016 Jul; 17(13):1216-20. PubMed ID: 27124421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Insights into the Triplet Sensitized Photochromism of Diarylethenes.
    Fredrich S; Morack T; Sliwa M; Hecht S
    Chemistry; 2020 Jun; 26(34):7672-7677. PubMed ID: 32185822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible C═N Bond Formation Controls Charge-Separation in an Aza-Diarylethene Photoswitch.
    Sacherer M; Gracheva S; Maid H; Placht C; Hampel F; Dube H
    J Am Chem Soc; 2024 Apr; 146(14):9575-9582. PubMed ID: 38536769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy for Molecular Design of Photochromic Diarylethenes Having Thermal Functionality.
    Kitagawa D; Kobatake S
    Chem Rec; 2016 Aug; 16(4):2005-15. PubMed ID: 27321920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diaryltriazolium Photoswitch: Reaching a Millisecond Cycloreversion with High Stability and NIR Absorption.
    Kolarski D; Steinbach P; Bannwarth C; Klaue K; Hecht S
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202318015. PubMed ID: 38116882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second Generation Zwitterionic Aza-Diarylethene: Photoreversible CN Bond Formation, Three-State Photoswitching, Thermal Energy Release, and Facile Photoinitiation of Polymerization.
    Sacherer M; Dube H
    Angew Chem Int Ed Engl; 2024 Oct; ():e202415961. PubMed ID: 39428353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Red-Shifted and Fluorogenic Nucleoside and Oligonucleotide Diarylethene Photoswitches.
    Kolmar T; Becker A; Pfretzschner RA; Lelke A; Jäschke A
    Chemistry; 2021 Dec; 27(69):17386-17394. PubMed ID: 34519390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal bleaching reactions of photochromic diarylethenes with thiophene-S,S-dioxide for a light-starting irreversible thermosensor.
    Shoji H; Kobatake S
    Chem Commun (Camb); 2013 Mar; 49(23):2362-4. PubMed ID: 23407660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mono- and bithiophene-substituted diarylethene photoswitches with emissive open or closed forms.
    Schleper AL; Bossi ML; Belov VN; Hell SW
    Beilstein J Org Chem; 2019; 15():2344-2354. PubMed ID: 31666869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Development of Inverse-Type Nucleoside Diarylethene Photoswitches.
    Hendrich CM; Reinschmidt M; Büllmann SM; Kolmar T; Jäschke A
    Chemistry; 2024 Oct; 30(57):e202401537. PubMed ID: 39045626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of High-Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches.
    Kolmar T; Büllmann SM; Sarter C; Höfer K; Jäschke A
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8164-8173. PubMed ID: 33476096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A building-block design for enhanced visible-light switching of diarylethenes.
    Zhang Z; Wang W; Jin P; Xue J; Sun L; Huang J; Zhang J; Tian H
    Nat Commun; 2019 Sep; 10(1):4232. PubMed ID: 31530814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoswitchable Oligonucleotides Containing Different Diarylethene-Modified Nucleotides.
    Sarter C; Dey S; Jäschke A
    ACS Omega; 2019 Jul; 4(7):12125-12129. PubMed ID: 31460326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching Diarylethenes Reliably in Both Directions with Visible Light.
    Fredrich S; Göstl R; Herder M; Grubert L; Hecht S
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1208-12. PubMed ID: 26662470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the fatigue resistance of diarylethene switches.
    Herder M; Schmidt BM; Grubert L; Pätzel M; Schwarz J; Hecht S
    J Am Chem Soc; 2015 Feb; 137(7):2738-47. PubMed ID: 25679768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.