These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27340654)

  • 1. Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity.
    Ren Y; Hong CI; Lim S; Song S
    Biomed Res Int; 2016; 2016():3017475. PubMed ID: 27340654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation.
    Yang R; Su Z
    Bioinformatics; 2010 Jun; 26(12):i168-74. PubMed ID: 20529902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets.
    Hughes ME; Hogenesch JB; Kornacker K
    J Biol Rhythms; 2010 Oct; 25(5):372-80. PubMed ID: 20876817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide circadian regulation: A unique system for computational biology.
    Sun L; Ma J; Turck CW; Xu P; Wang GZ
    Comput Struct Biotechnol J; 2020; 18():1914-1924. PubMed ID: 32774786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti.
    Leming MT; Rund SS; Behura SK; Duffield GE; O'Tousa JE
    BMC Genomics; 2014 Dec; 15(1):1128. PubMed ID: 25516260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.
    Rund SS; Yoo B; Alam C; Green T; Stephens MT; Zeng E; George GF; Sheppard AD; Duffield GE; Milenković T; Pfrender ME
    BMC Genomics; 2016 Aug; 17():653. PubMed ID: 27538446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of five methods for genome-wide circadian gene identification.
    Wu G; Zhu J; Yu J; Zhou L; Huang JZ; Zhang Z
    J Biol Rhythms; 2014 Aug; 29(4):231-42. PubMed ID: 25238853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach.
    Mazzoccoli G; Francavilla M; Pazienza V; Benegiamo G; Piepoli A; Vinciguerra M; Giuliani F; Yamamoto T; Takumi T
    Chronobiol Int; 2012 Dec; 29(10):1300-11. PubMed ID: 23131081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods detecting rhythmic gene expression are biologically relevant only for strong signal.
    Laloum D; Robinson-Rechavi M
    PLoS Comput Biol; 2020 Mar; 16(3):e1007666. PubMed ID: 32182235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora.
    Sancar C; Sancar G; Ha N; Cesbron F; Brunner M
    BMC Biol; 2015 Feb; 13():17. PubMed ID: 25762222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmasking ultradian rhythms in gene expression.
    van der Veen DR; Gerkema MP
    FASEB J; 2017 Feb; 31(2):743-750. PubMed ID: 27871062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system.
    Gerkema MP; Daan S; Wilbrink M; Hop MW; van der Leest F
    J Biol Rhythms; 1993; 8(2):151-71. PubMed ID: 8369551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene pathways using mixture Bayesian networks.
    Ko Y; Zhai C; Rodriguez-Zas S
    BMC Syst Biol; 2009 May; 3():54. PubMed ID: 19454027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clock gene expression in human and mouse hepatic models shows similar periodicity but different dynamics of variation.
    Mazzoccoli G; Rubino R; Tiberio C; Giuliani F; Vinciguerra M; Oben J; De Cata A; Tarquini R; De Cosmo S; Liu S; Cai Y
    Chronobiol Int; 2016; 33(2):181-90. PubMed ID: 26980725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data.
    Luan Y; Li H
    Bioinformatics; 2004 Feb; 20(3):332-9. PubMed ID: 14960459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Application of the Bayesian Periodicity Test to Identify Diurnal Rhythm Genes in the Brain.
    Kocak M; Mozhui K
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):47-55. PubMed ID: 30047896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and modeling of genes with diurnal oscillations from microarray time series data.
    Wang W; Ghosh BK; Pakrasi HB
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):108-21. PubMed ID: 21071801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver.
    Gong C; Li C; Qi X; Song Z; Wu J; Hughes ME; Li X
    Chronobiol Int; 2015; 32(9):1254-63. PubMed ID: 26512910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-mediated regulation in the mammalian circadian rhythm.
    Liu K; Wang R
    J Theor Biol; 2012 Jul; 304():103-10. PubMed ID: 22554948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.