BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 27341018)

  • 1. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
    Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O
    J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils.
    Jeong J; Charbeneau RJ
    J Contam Hydrol; 2014 Jan; 156():52-61. PubMed ID: 24262305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using groundwater monitoring wells for rapid application of soil gas radon deficit technique to evaluate residual LNAPL.
    Cecconi A; Verginelli I; Baciocchi R; Lanari C; Villani F; Bonfedi G
    J Contam Hydrol; 2023 Sep; 258():104241. PubMed ID: 37690392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of soil gas radon as an in situ partitioning tracer for quantifying LNAPL contamination.
    Cecconi A; Verginelli I; Baciocchi R
    Sci Total Environ; 2022 Feb; 806(Pt 2):150593. PubMed ID: 34592297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive soil gas technique for investigating soil and groundwater plume emanating from volatile organic hydrocarbon at Bazian oil refinery site.
    Hamamin DF
    Sci Total Environ; 2018 May; 622-623():1485-1498. PubMed ID: 29890613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble-Facilitated VOC Transport from LNAPL Smear Zones and Its Potential Effect on Vapor Intrusion.
    Soucy NC; Mumford KG
    Environ Sci Technol; 2017 Mar; 51(5):2795-2802. PubMed ID: 28112915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction.
    Lee JH; Woo HJ; Jeong KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(14):1253-1266. PubMed ID: 30623720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions.
    Zuo R; Zhao X; Yang J; Pan M; Xue Z; Gao X; Wang J; Teng Y
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT.
    Steelman CM; Klazinga DR; Cahill AG; Endres AL; Parker BL
    J Contam Hydrol; 2017 Oct; 205():12-24. PubMed ID: 28865808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of advection on the soil gas radon deficit technique for the quantification of LNAPL.
    Cecconi A; Verginelli I; Barrio-Parra F; De Miguel E; Baciocchi R
    Sci Total Environ; 2023 Jun; 875():162619. PubMed ID: 36878290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates.
    Patterson BM; Aravena R; Davis GB; Furness AJ; Bastow TP; Bouchard D
    J Contam Hydrol; 2013 Oct; 153():69-77. PubMed ID: 23999077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation.
    Robert T; Martel R; Lefebvre R; Lauzon JM; Morin A
    J Contam Hydrol; 2017 Sep; 204():57-65. PubMed ID: 28826903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery.
    Huntley D; Beckett GD
    J Contam Hydrol; 2002 Nov; 59(1-2):3-26. PubMed ID: 12683637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid.
    Dobson R; Schroth MH; Zeyer J
    J Contam Hydrol; 2007 Dec; 94(3-4):235-48. PubMed ID: 17698242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical Light Non-Aqueous Phase Liquid (LNAPL) distribution by Rn prospecting in monitoring wells.
    Briganti A; Voltaggio M; Rainaldi E; Carusi C
    Environ Monit Assess; 2023 Dec; 196(1):19. PubMed ID: 38060038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes.
    Amos RT; Bekins BA; Delin GN; Cozzarelli IM; Blowes DW; Kirshtein JD
    J Contam Hydrol; 2011 Jul; 125(1-4):13-25. PubMed ID: 21612840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the benefits of in-time and in-place responses to remediate acute LNAPL release incidents.
    Sookhak Lari K; King A; Rayner JL; Davis GB
    J Environ Manage; 2021 Jun; 287():112356. PubMed ID: 33765523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of subsurface contamination of an urban coastal aquifer due to oil spill.
    Nambi IM; Rajasekhar B; Loganathan V; RaviKrishna R
    Environ Monit Assess; 2017 Apr; 189(4):148. PubMed ID: 28275982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory-scale experimental and modelling investigations of
    Cohen GJV; Bernachot I; Su D; Höhener P; Mayer KU; Atteia O
    Sci Total Environ; 2019 Sep; 681():456-466. PubMed ID: 31117017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.