These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27341027)

  • 1. How to Estimate Epidemic Risk from Incomplete Contact Diaries Data?
    Mastrandrea R; Barrat A
    PLoS Comput Biol; 2016 Jun; 12(6):e1005002. PubMed ID: 27341027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the epidemic risk using non-uniformly sampled contact data.
    Fournet J; Barrat A
    Sci Rep; 2017 Aug; 7(1):9975. PubMed ID: 28855718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys.
    Mastrandrea R; Fournet J; Barrat A
    PLoS One; 2015; 10(9):e0136497. PubMed ID: 26325289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic risk from friendship network data: an equivalence with a non-uniform sampling of contact networks.
    Fournet J; Barrat A
    Sci Rep; 2016 Apr; 6():24593. PubMed ID: 27079788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact diaries versus wearable proximity sensors in measuring contact patterns at a conference: method comparison and participants' attitudes.
    Smieszek T; Castell S; Barrat A; Cattuto C; White PJ; Krause G
    BMC Infect Dis; 2016 Jul; 16():341. PubMed ID: 27449511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemic spreading in networks with nonrandom long-range interactions.
    Estrada E; Kalala-Mutombo F; Valverde-Colmeiro A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036110. PubMed ID: 22060459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices.
    Machens A; Gesualdo F; Rizzo C; Tozzi AE; Barrat A; Cattuto C
    BMC Infect Dis; 2013 Apr; 13():185. PubMed ID: 23618005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensating for population sampling in simulations of epidemic spread on temporal contact networks.
    Génois M; Vestergaard CL; Cattuto C; Barrat A
    Nat Commun; 2015 Nov; 6():8860. PubMed ID: 26563418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics.
    Volz EM; Miller JC; Galvani A; Ancel Meyers L
    PLoS Comput Biol; 2011 Jun; 7(6):e1002042. PubMed ID: 21673864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
    Firestone SM; Ward MP; Christley RM; Dhand NK
    Prev Vet Med; 2011 Dec; 102(3):185-95. PubMed ID: 21852007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemic spreading in annealed directed networks: susceptible-infected-susceptible model and contact process.
    Kwon S; Kim Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012813. PubMed ID: 23410394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algorithm to build synthetic temporal contact networks based on close-proximity interactions data.
    Duval A; Leclerc QJ; Guillemot D; Temime L; Opatowski L
    PLoS Comput Biol; 2024 Jun; 20(6):e1012227. PubMed ID: 38870216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the outcome of spreading processes on networks with incomplete information: A dimensionality reduction approach.
    Sapienza A; Barrat A; Cattuto C; Gauvin L
    Phys Rev E; 2018 Jul; 98(1-1):012317. PubMed ID: 30110805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Contact Tracing Through Bluetooth and GPS Surveillance Data: Simulation-Driven Approach.
    Qian W; Cooke A; Stanley KG; Osgood ND
    J Med Internet Res; 2024 Apr; 26():e38170. PubMed ID: 38422493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution epidemic simulation using within-host infection and contact data.
    Nguyen VK; Mikolajczyk R; Hernandez-Vargas EA
    BMC Public Health; 2018 Jul; 18(1):886. PubMed ID: 30016958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimates of Social Contact in a Middle School Based on Self-Report and Wireless Sensor Data.
    Leecaster M; Toth DJ; Pettey WB; Rainey JJ; Gao H; Uzicanin A; Samore M
    PLoS One; 2016; 11(4):e0153690. PubMed ID: 27100090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous social distancing in response to a simulated epidemic: a virtual experiment.
    Kleczkowski A; Maharaj S; Rasmussen S; Williams L; Cairns N
    BMC Public Health; 2015 Sep; 15():973. PubMed ID: 26415861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks.
    Gómez S; Gómez-Gardeñes J; Moreno Y; Arenas A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036105. PubMed ID: 22060454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of contact network structure on epidemic transmission trees: implications for data required to estimate network structure.
    Carnegie NB
    Stat Med; 2018 Jan; 37(2):236-248. PubMed ID: 28192859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.