BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27341137)

  • 1. Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect.
    Long Q; Fang A; Wen Y; Li H; Zhang Y; Yao S
    Biosens Bioelectron; 2016 Dec; 86():109-114. PubMed ID: 27341137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Fluorescent Biosensor for Detection of Silver Ions Based on Upconversion Nanoparticles.
    Long Q; Wen Y; Li H; Zhang Y; Yao S
    J Fluoresc; 2017 Jan; 27(1):205-211. PubMed ID: 27771805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid.
    Fang A; Wu Q; Lu Q; Chen H; Li H; Liu M; Zhang Y; Yao S
    Biosens Bioelectron; 2016 Dec; 86():664-670. PubMed ID: 27471157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual-signal colorimetric and ratiometric fluorescent nanoprobe for enzymatic determination of uric acid by using silicon nanoparticles.
    Wu C; Zhu L; Lu Q; Li H; Zhang Y; Yao S
    Mikrochim Acta; 2019 Nov; 186(12):754. PubMed ID: 31705210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn
    Zhou Y; Ling B; Chen H; Wang L
    Talanta; 2018 Apr; 180():120-126. PubMed ID: 29332789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples.
    Li F; Rui J; Yan Z; Qiu P; Tang X
    Mikrochim Acta; 2021 Aug; 188(9):311. PubMed ID: 34455515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum.
    Wu Q; Fang A; Li H; Zhang Y; Yao S
    Biosens Bioelectron; 2016 Mar; 77():957-62. PubMed ID: 26544870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles.
    Liu Y; Li H; Guo B; Wei L; Chen B; Zhang Y
    Biosens Bioelectron; 2017 May; 91():734-740. PubMed ID: 28130993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ''naked-eye'' colorimetric and ratiometric fluorescence probe for uric acid based on Ti
    Liu M; He Y; Zhou J; Ge Y; Zhou J; Song G
    Anal Chim Acta; 2020 Mar; 1103():134-142. PubMed ID: 32081178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes.
    Jin D; Seo MH; Huy BT; Pham QT; Conte ML; Thangadurai D; Lee YI
    Biosens Bioelectron; 2016 Mar; 77():359-65. PubMed ID: 26433069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gold nanocluster-based sensor for sensitive uric acid detection.
    Xu P; Li R; Tu Y; Yan J
    Talanta; 2015 Nov; 144():704-9. PubMed ID: 26452880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe.
    Wang J; Chang Y; Wu WB; Zhang P; Lie SQ; Huang CZ
    Talanta; 2016 May; 152():314-20. PubMed ID: 26992526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure regulation and enzyme cascade signal amplification strategy for upconversion ratiometric luminescent and colorimetric alkaline phosphatase detection.
    Chen H; Zhou Z; Lu Q; Wu C; Liu M; Zhang Y; Yao S
    Anal Chim Acta; 2019 Mar; 1051():160-168. PubMed ID: 30661613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H
    Wang XY; Zhu GB; Cao WD; Liu ZJ; Pan CG; Hu WJ; Zhao WY; Sun JF
    Talanta; 2019 Jan; 191():46-53. PubMed ID: 30262085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/ Th-MOF for uric acid sensing in biological samples.
    Badoei-Dalfard A; Sohrabi N; Karami Z; Sargazi G
    Biosens Bioelectron; 2019 Sep; 141():111420. PubMed ID: 31220726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive fluorescent detection of H
    Chen H; Fang A; He L; Zhang Y; Yao S
    Talanta; 2017 Mar; 164():580-587. PubMed ID: 28107976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of serum uric acid using the optical polymeric enzyme biochip system.
    Huang SH; Shih YC; Wu CY; Yuan CJ; Yang YS; Li YK; Wu TK
    Biosens Bioelectron; 2004 Jul; 19(12):1627-33. PubMed ID: 15142596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An amperometric uric acid biosensor based on modified Ir-C electrode.
    Luo YC; Do JS; Liu CC
    Biosens Bioelectron; 2006 Oct; 22(4):482-8. PubMed ID: 16908130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-coupled fluorescence sensor for sensitive determination of uric acid and uricase inhibitor.
    Jiao Y; Xing Y; Li K; Li Z; Zhao G
    Luminescence; 2021 Aug; 36(5):1110-1116. PubMed ID: 32706938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.