These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27341261)

  • 1. Structures of Local Rearrangements in Soft Colloidal Glasses.
    Yang X; Liu R; Yang M; Wang WH; Chen K
    Phys Rev Lett; 2016 Jun; 116(23):238003. PubMed ID: 27341261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural origin of relaxation in dense colloidal suspensions.
    Sahu R; Sharma M; Schall P; Maitra Bhattacharyya S; Chikkadi V
    Proc Natl Acad Sci U S A; 2024 Oct; 121(42):e2405515121. PubMed ID: 39382997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range strain correlations in sheared colloidal glasses.
    Chikkadi V; Wegdam G; Bonn D; Nienhuis B; Schall P
    Phys Rev Lett; 2011 Nov; 107(19):198303. PubMed ID: 22181651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible.
    Fan M; Wang M; Zhang K; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E; 2017 Feb; 95(2-1):022611. PubMed ID: 28297989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.
    Chen K; Manning ML; Yunker PJ; Ellenbroek WG; Zhang Z; Liu AJ; Yodh AG
    Phys Rev Lett; 2011 Sep; 107(10):108301. PubMed ID: 21981536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions.
    Peng X; McKenna GB
    Phys Rev E; 2016 Apr; 93():042603. PubMed ID: 27176348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural rearrangements that govern flow in colloidal glasses.
    Schall P; Weitz DA; Spaepen F
    Science; 2007 Dec; 318(5858):1895-9. PubMed ID: 18096800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting plasticity with soft vibrational modes: from dislocations to glasses.
    Rottler J; Schoenholz SS; Liu AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042304. PubMed ID: 24827248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of the free energy of aging hard sphere colloidal glasses.
    Zargar R; Nienhuis B; Schall P; Bonn D
    Phys Rev Lett; 2013 Jun; 110(25):258301. PubMed ID: 23829762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational modes identify soft spots in a sheared disordered packing.
    Manning ML; Liu AJ
    Phys Rev Lett; 2011 Sep; 107(10):108302. PubMed ID: 21981537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local thermal energy as a structural indicator in glasses.
    Zylberg J; Lerner E; Bar-Sinai Y; Bouchbinder E
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7289-7294. PubMed ID: 28655846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal polycrystalline monolayers under oscillatory shear.
    Buttinoni I; Steinacher M; Spanke HT; Pokki J; Bahmann S; Nelson B; Foffi G; Isa L
    Phys Rev E; 2017 Jan; 95(1-1):012610. PubMed ID: 28208468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass.
    Ghosh A; Chikkadi V; Schall P; Bonn D
    Phys Rev Lett; 2011 Oct; 107(18):188303. PubMed ID: 22107681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isochoric structural recovery in molecular glasses and its analog in colloidal glasses.
    Banik S; McKenna GB
    Phys Rev E; 2018 Jun; 97(6-1):062601. PubMed ID: 30011534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational Modes and Dynamic Heterogeneity in a Near-Equilibrium 2D Glass of Colloidal Kites.
    Zong Y; Chen K; Mason TG; Zhao K
    Phys Rev Lett; 2018 Nov; 121(22):228003. PubMed ID: 30547612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of free-volume bubbles by cooperative-rearrangement regions during the deposition growth of a colloidal glass.
    Cao X; Zhang H; Han Y
    Nat Commun; 2017 Aug; 8(1):362. PubMed ID: 28842562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft modes and nonaffine rearrangements in the inherent structures of supercooled liquids.
    Mosayebi M; Ilg P; Widmer-Cooper A; Del Gado E
    Phys Rev Lett; 2014 Mar; 112(10):105503. PubMed ID: 24679306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rejuvenation of metallic glasses by non-affine thermal strain.
    Ketov SV; Sun YH; Nachum S; Lu Z; Checchi A; Beraldin AR; Bai HY; Wang WH; Louzguine-Luzgin DV; Carpenter MA; Greer AL
    Nature; 2015 Aug; 524(7564):200-3. PubMed ID: 26268190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic approach for the understanding of the kinetics of heat effects induced by structural relaxation of metallic glasses.
    Makarov AS; Afonin GV; Aronin AS; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2022 Jan; 34(12):. PubMed ID: 34942612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between plastic rearrangements and local structure in a cyclically driven glass.
    Mitra S; Marín-Aguilar S; Sastry S; Smallenburg F; Foffi G
    J Chem Phys; 2022 Feb; 156(7):074503. PubMed ID: 35183088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.