BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27341300)

  • 1. X-ray Powder Diffraction in Conservation Science: Towards Routine Crystal Structure Determination of Corrosion Products on Heritage Art Objects.
    Dinnebier RE; Fischer A; Eggert G; Runčevski T; Wahlberg N
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state structure of a degradation product frequently observed on historic metal objects.
    Dinnebier RE; Runčevski T; Fischer A; Eggert G
    Inorg Chem; 2015 Mar; 54(6):2638-42. PubMed ID: 25710277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the suitability of museum storage or display materials for the conservation of metal objects: a study on the conformance between the deposited metal film method and the Oddy test.
    Shen J; Shen Y; Xu F; Zhou X; Wu L
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35109-35129. PubMed ID: 30328039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The coordinated use of synchrotron spectroelectrochemistry for corrosion studies on heritage metals.
    Adriaens A; Dowsett M
    Acc Chem Res; 2010 Jun; 43(6):927-35. PubMed ID: 20218677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and structures of Pb3O2(CH3COO)2·0.5H2O and Pb2O(HCOO)2: two corrosion products revisited.
    Mauck CM; van den Heuvel TW; Hull MM; Zeller M; Oertel CM
    Inorg Chem; 2010 Nov; 49(22):10736-43. PubMed ID: 20961144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efflorescence on calcareous objects in museums: crystallisation, phase characterisation and crystal structures of calcium acetate formate phases.
    Bette S; Müller MX; Eggert G; Schleid T; Dinnebier RE
    Dalton Trans; 2019 Nov; 48(42):16062-16073. PubMed ID: 31613301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of aqueous washing on the ability of βFeOOH to corrode iron.
    Watkinson DE; Emmerson NJ
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2138-2149. PubMed ID: 27164877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of crystalline pharmaceuticals in powders and tablets by a pattern-fitting procedure using X-ray powder diffraction data.
    Yamamura S; Momose Y
    Int J Pharm; 2001 Jan; 212(2):203-12. PubMed ID: 11165078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
    Martí-Rujas J; Kawano M
    Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
    Stitt CA; Hart M; Harker NJ; Hallam KR; MacFarlane J; Banos A; Paraskevoulakos C; Butcher E; Padovani C; Scott TB
    J Hazard Mater; 2015 Mar; 285():221-7. PubMed ID: 25497037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of paramagnetic copper(II) oxalate (CuC₂O₄): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites.
    Christensen AN; Lebech B; Andersen NH; Grivel JC
    Dalton Trans; 2014 Nov; 43(44):16754-68. PubMed ID: 25278188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Lysine: exploiting powder X-ray diffraction to complete the set of crystal structures of the 20 directly encoded proteinogenic amino acids.
    Williams PA; Hughes CE; Harris KD
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3973-7. PubMed ID: 25651303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Camphor wood, a potentially harmful museum storage material: an analytical study using instrumental methods.
    Shen J
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46458-46468. PubMed ID: 32617816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The determination of crystal structures of active pharmaceutical ingredients from X-ray powder diffraction data: a brief, practical introduction, with fexofenadine hydrochloride as example.
    Brüning J; Schmidt MU
    J Pharm Pharmacol; 2015 Jun; 67(6):773-81. PubMed ID: 25677117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative determination of hydrate content of theophylline powder by chemometric X-ray powder diffraction analysis.
    Otsuka M; Kinoshita H
    AAPS PharmSciTech; 2010 Mar; 11(1):204-11. PubMed ID: 20127211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca
    Yan Y; Kang Y; Li D; Yu K; Xiao T; Deng Y; Dai H; Dai Y; Xiong H; Fang H
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():582-596. PubMed ID: 28254333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On verdigris, part II: synthesis of the 2-1-5 phase, Cu
    Bette S; Kremer RK; Eggert G; Dinnebier RE
    Dalton Trans; 2018 Jun; 47(25):8209-8220. PubMed ID: 29870036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass-Induced Lead Corrosion of Heritage Objects: Structural Characterization of K(OH)·2PbCO
    Bette S; Eggert G; Fischer A; Dinnebier RE
    Inorg Chem; 2017 May; 56(10):5762-5770. PubMed ID: 28459561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material.
    Ibrahim H; Klarner AD; Poorganji B; Dean D; Luo AA; Elahinia M
    J Mech Behav Biomed Mater; 2017 May; 69():203-212. PubMed ID: 28088072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powder diffraction crystallography of molecular solids.
    Harris KD
    Top Curr Chem; 2012; 315():133-77. PubMed ID: 21952843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.