These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27341451)

  • 1. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.
    Zhang S; Pun SH; Mak PU; Qin YP; Liu YH; Vai MI
    Technol Health Care; 2016 Nov; 24(6):821-826. PubMed ID: 27341451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a floating-ground-electrode circuit for measuring attenuation of the human body channel.
    Zhang Y; Gao Z; Liu W; Gao Y; Du M
    Technol Health Care; 2020; 28(3):275-281. PubMed ID: 31594265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of implantable signal transmission characteristics based on visible data of the human leg.
    Gao YM; Ye YT; Lin S; Vasić ŽL; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2017 Jul; 16(1):88. PubMed ID: 28676056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An implantable telemetry system for impedance spectroscopy].
    Seeger A; Kertzscher U; Gerhäusser A; Krause F; Sommer G; Kolupa J; Schäfer H; Arnold R; Affeld K; Schaldach M; Scheel W; Orglmeister R; Manck O
    Biomed Tech (Berl); 1998; 43 Suppl 3():117-22. PubMed ID: 11776209
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.
    Tsujimura S; Yamagishi H; Sankai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4110-5. PubMed ID: 19964616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal transmission through human muscle for implantable medical devices using galvanic intra-body communication technique.
    Chen XM; Mak PU; Pun SH; Gao YM; Vai MI; Du M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1651-4. PubMed ID: 23366224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path Loss Measurement and Channel Modeling with Muscular Tissue Characteristics.
    Qin YP; Zhang S; Liu HY; Liu YH; Li YZ; Peng X; Ma X; Li QL; Huang X
    Open Biomed Eng J; 2017; 11():1-8. PubMed ID: 28567127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of human limb gestures on galvanic coupling intra-body communication for advanced healthcare system.
    Chen XM; Pun SH; Zhao JF; Mak PU; Liang BD; Vai MI
    Biomed Eng Online; 2016 May; 15(1):60. PubMed ID: 27230849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparable Investigation of Characteristics for Implant Intra-Body Communication Based on Galvanic and Capacitive Coupling.
    Li M; Song Y; Hou Y; Li N; Jiang Y; Sulaman M; Hao Q
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1747-1758. PubMed ID: 31514153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new technique for transmission of signals from implantable transducers.
    Lindsey DP; McKee EL; Hull ML; Howell SM
    IEEE Trans Biomed Eng; 1998 May; 45(5):614-9. PubMed ID: 9581060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and analysis of an implantable CPW-fed X-monopole antenna for 2.45-GHz ISM band applications.
    Ashok Kumar S; Shanmuganantham T
    Telemed J E Health; 2014 Mar; 20(3):246-52. PubMed ID: 24404821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fading characteristics of a 2.3 GHz radio telemetry channel in a hospital building.
    Wang LQ; Evans NE; Burns JB; Matthews JG
    Med Eng Phys; 1995 Apr; 17(3):226-31. PubMed ID: 7795861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on intrabody communication for personal healthcare monitoring system.
    Alshehab A; Kobayashi N; Ruiz J; Kikuchi R; Shimamoto S; Ishibashi H
    Telemed J E Health; 2008 Oct; 14(8):851-7. PubMed ID: 18954257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of an implantable animal activity rhythm detector and the low-power design].
    Li Z; Yang B; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1121-5. PubMed ID: 22295698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Path Model and Sensitivity Analysis for Galvanic Coupled Intra-Body Communication Through Layered Tissue.
    Swaminathan M; Cabrera FS; Pujol JS; Muncuk U; Schirner G; Chowdhury KR
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):339-51. PubMed ID: 25974946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.
    Okamoto E; Kato Y; Seino K; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Artif Organs; 2012 Oct; 36(10):852-8. PubMed ID: 22812488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Microstrip antenna design and system research of radio frequency identification temperature sensor].
    Yang H; Yang X; Chen Y; Pan M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1420-4. PubMed ID: 19166222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An implantable, externally powered radiotelemetric system for long-term ECG and heart-rate monitoring.
    Hansen B; Aabo K; Bojsen J
    Biotelem Patient Monit; 1982; 9(4):227-37. PubMed ID: 7183352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless implantable electronic platform for chronic fluorescent-based biosensors.
    Valdastri P; Susilo E; Förster T; Strohhöfer C; Menciassi A; Dario P
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1846-54. PubMed ID: 21385666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.