These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27341584)

  • 1. Feasibility and Effectiveness of a Novel Exoskeleton for an Infant With Arm Movement Impairments.
    Babik I; Kokkoni E; Cunha AB; Galloway JC; Rahman T; Lobo MA
    Pediatr Phys Ther; 2016; 28(3):338-46. PubMed ID: 27341584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Play with objects in children with arthrogryposis: Effects of intervention with the Playskin Lift™ exoskeletal garment.
    Babik I; Cunha AB; Lobo MA
    Am J Med Genet C Semin Med Genet; 2019 Sep; 181(3):393-403. PubMed ID: 31232529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease.
    Haumont T; Rahman T; Sample W; M King M; Church C; Henley J; Jayakumar S
    J Pediatr Orthop; 2011; 31(5):e44-9. PubMed ID: 21654447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and development of the first exoskeletal garment to enhance arm mobility for children with movement impairments.
    Hall ML; Lobo MA
    Assist Technol; 2018; 30(5):251-258. PubMed ID: 28541832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive exoskeletons for assisting limb movement.
    Rahman T; Sample W; Jayakumar S; King MM; Wee JY; Seliktar R; Alexander M; Scavina M; Clark A
    J Rehabil Res Dev; 2006; 43(5):583-90. PubMed ID: 17123200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative measures with WREX usage.
    Shank TM; Wee J; Ty J; Rahman T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1375-1380. PubMed ID: 28814012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Playskin Lift: Development and Initial Testing of an Exoskeletal Garment to Assist Upper Extremity Mobility and Function.
    Lobo MA; Koshy J; Hall ML; Erol O; Cao H; Buckley JM; Galloway JC; Higginson J
    Phys Ther; 2016 Mar; 96(3):390-9. PubMed ID: 26316534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assistive and Rehabilitative Effects of the Playskin Lift
    Babik I; Cunha AB; Lobo MA
    Am J Occup Ther; 2021; 75(1):7501205110p1-7501205110p10. PubMed ID: 33399059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements.
    Ramella G; Grazi L; Giovacchini F; Trigili E; Vitiello N; Crea S
    Appl Ergon; 2024 May; 117():104226. PubMed ID: 38219374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility and Effectiveness of Intervention With the Playskin Lift Exoskeletal Garment for Infants at Risk.
    Babik I; Cunha AB; Moeyaert M; Hall ML; Paul DA; Mackley A; Lobo MA
    Phys Ther; 2019 Jun; 99(6):666-676. PubMed ID: 31155661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Exteroception during Object Handling with an Upper Limb Exoskeleton.
    Arcangeli D; Dubois O; Roby-Brami A; Famié S; de Marco G; Arnold G; Jarrassé N; Parry R
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying upper extremity performance with and without assistance of a soft-robotic glove in elderly patients: A kinematic analysis.
    van Ommeren A; Radder B; Kottink A; Buurke J; Prange-Lasonder G; Rietman J
    J Rehabil Med; 2019 Apr; 51(4):298-306. PubMed ID: 30767023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exoskeleton-Assisted Anthropomorphic Movement Training for the Upper Limb After Stroke: The EAMT Randomized Trial.
    Chen ZJ; He C; Xu J; Zheng CJ; Wu J; Xia N; Hua Q; Xia WG; Xiong CH; Huang XL
    Stroke; 2023 Jun; 54(6):1464-1473. PubMed ID: 37154059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exoskeleton-Assisted Anthropomorphic Movement Training (EAMT) for Poststroke Upper Limb Rehabilitation: A Pilot Randomized Controlled Trial.
    Chen ZJ; He C; Guo F; Xiong CH; Huang XL
    Arch Phys Med Rehabil; 2021 Nov; 102(11):2074-2082. PubMed ID: 34174225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and testing of a functional arm orthosis in patients with neuromuscular diseases.
    Rahman T; Sample W; Seliktar R; Scavina MT; Clark AL; Moran K; Alexander MA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):244-51. PubMed ID: 17601194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.