These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27341584)

  • 21. Use of the Wilmington Robotic Exoskeleton to Improve Upper Extremity Function in Patients With Duchenne Muscular Dystrophy.
    Estilow T; Glanzman AM; Powers K; Moll A; Flickinger J; Medne L; Tennekoon G; Yum SW
    Am J Occup Ther; 2018; 72(2):7202345010p1-7202345010p5. PubMed ID: 29426391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of a gravity-compensating orthosis on reaching after stroke: evaluation of the Therapy Assistant WREX.
    Iwamuro BT; Cruz EG; Connelly LL; Fischer HC; Kamper DG
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2121-8. PubMed ID: 18996241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A passively safe cable driven upper limb rehabilitation exoskeleton.
    Chen Y; Fan J; Zhu Y; Zhao J; Cai H
    Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Upper Limb Exoskeleton Motion Generation Algorithm Based on Separating Shoulder and Arm Motion.
    Wang J; Pei S; Guo J; Dong A; Liu B; Yao Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1142-1153. PubMed ID: 38252574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders.
    Gunn M; Shank TM; Eppes M; Hossain J; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1277-1283. PubMed ID: 28055882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movement kinematics and proprioception in post-stroke spasticity: assessment using the Kinarm robotic exoskeleton.
    Mochizuki G; Centen A; Resnick M; Lowrey C; Dukelow SP; Scott SH
    J Neuroeng Rehabil; 2019 Nov; 16(1):146. PubMed ID: 31753011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical changes, acceptance, and usability of a passive shoulder exoskeleton in manual material handling. A field study.
    Schrøder Jakobsen L; de Zee M; Samani A; Desbrosses K; Madeleine P
    Appl Ergon; 2023 Nov; 113():104104. PubMed ID: 37531933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissociating motor learning from recovery in exoskeleton training post-stroke.
    Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O
    J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Arm Weight Support Training to Promote Recovery of Upper Limb Function for Subacute Patients after Stroke with Different Levels of Arm Impairments.
    Chan IH; Fong KN; Chan DY; Wang AQ; Cheng EK; Chau PH; Chow KK; Cheung HK
    Biomed Res Int; 2016; 2016():9346374. PubMed ID: 27517053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current Trends and Challenges in Pediatric Access to Sensorless and Sensor-Based Upper Limb Exoskeletons.
    Gaudet G; Raison M; Achiche S
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Providing unloading by exoskeleton improves shoulder flexion performance after stroke.
    Perry B; Sivak J; Stokic D
    Exp Brain Res; 2021 May; 239(5):1539-1549. PubMed ID: 33693984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton.
    Grimm F; Kraugmann J; Naros G; Gharabaghi A
    J Neuroeng Rehabil; 2021 Jun; 18(1):92. PubMed ID: 34078400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Principles of treatment of the upper extremity in arthrogryposis multiplex congenita type I.
    Axt MW; Niethard FU; Döderlein L; Weber M
    J Pediatr Orthop B; 1997 Jul; 6(3):179-85. PubMed ID: 9260646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative independence of upper limb position sense and reaching in children with hemiparetic perinatal stroke.
    Kuczynski AM; Kirton A; Semrau JA; Dukelow SP
    J Neuroeng Rehabil; 2021 May; 18(1):80. PubMed ID: 33980254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.