These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27342)

  • 1. The significance of cortical extracellular H+, K+ and Ca2+ activities for regulation of local cerebral blood flow under conditions of enhanced neuronal activity.
    Heuser D
    Ciba Found Symp; 1978 Mar; (56):339-53. PubMed ID: 27342
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence against H+ and K+ as main factors for the control of cerebral blood flow: a microelectrode study.
    Astrup J; Heuser D; Lassen NA; Nilsson B; Norberg K; Siesjö BK
    Ciba Found Symp; 1978 Mar; (56):313-37. PubMed ID: 27341
    [No Abstract]   [Full Text] [Related]  

  • 3. Cerebral blood flow: its measurement and regulation.
    Betz E
    Physiol Rev; 1972 Jul; 52(3):595-630. PubMed ID: 4555515
    [No Abstract]   [Full Text] [Related]  

  • 4. Capillary flow in the brain cortex during changes in oxygen supply and state of activation.
    Lübbers DW; Leniger-Follert E
    Ciba Found Symp; 1978 Mar; (56):21-47. PubMed ID: 27338
    [No Abstract]   [Full Text] [Related]  

  • 5. [Influence of the hydrogen-ion concentration of the ceebral cortex on cortical blood flow].
    Betz E; Kozak R
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 293(1):56-67. PubMed ID: 5243815
    [No Abstract]   [Full Text] [Related]  

  • 6. Non-uniform response of regional cerebral blood flow to stimulation of cervical sympathetic nerve.
    Yamaguchi T; Waltz AG
    J Neurol Neurosurg Psychiatry; 1971 Oct; 34(5):602-6. PubMed ID: 5122388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anaesthetized cats.
    Leniger-Follert E
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):150-65. PubMed ID: 6725427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in extracellular potassium activity during neocortical propagated seizures.
    Sypert GW; Ward AA
    Exp Neurol; 1974 Oct; 45(1):19-41. PubMed ID: 4412381
    [No Abstract]   [Full Text] [Related]  

  • 9. [Resistance in large and small cerebral arteries during seizures].
    Mchedlishvili GI; Ormotsadze LG; Mitagvariia NP; Antiia RV
    Biull Eksp Biol Med; 1973 Mar; 75(1):27-9. PubMed ID: 4778654
    [No Abstract]   [Full Text] [Related]  

  • 10. The significnce of cortical extracellular pH for the regulation of blood flow in the cerebral cortex.
    Betz E
    Prog Brain Res; 1968; 30():99-102. PubMed ID: 5735488
    [No Abstract]   [Full Text] [Related]  

  • 11. [The regulation of local cortical cerebral blood flow following injections of nor-epinephrine, pentobarbital and adrenolitico].
    Bienmüller H; Betz E
    Arztl Forsch; 1970 Apr; 24(4):97-111. PubMed ID: 4395936
    [No Abstract]   [Full Text] [Related]  

  • 12. Reactions of pial vessels during variation of local perivascular ionic composition of the CSF.
    Heuser D; Knabe U; Gebert G; Betz E
    Eur Neurol; 1971-1972; 6(1):96-9. PubMed ID: 5153462
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities.
    McCreery DB; Agnew WF
    Exp Neurol; 1983 Feb; 79(2):371-96. PubMed ID: 6822270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial stability of extracellular potassium ion and blood flow distribution in rat cerebral cortex after permanent middle cerebral artery occlusion.
    Sick TJ; Feng ZC; Rosenthal M
    J Cereb Blood Flow Metab; 1998 Oct; 18(10):1114-20. PubMed ID: 9778188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral cortical extracellular fluid H+ and K+ activities during hypotension in cats.
    Morris PJ; Heuser D; McDowall DG; Hashiba M; Myers D
    Anesthesiology; 1983 Jul; 59(1):10-8. PubMed ID: 6859606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats.
    Lothman E; Lamanna J; Cordingley G; Rosenthal M; Somjen G
    Brain Res; 1975 Apr; 88(1):15-36. PubMed ID: 164265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study.
    Kuschinsky W; Wahl M; Bosse O; Thurau K
    Circ Res; 1972 Aug; 31(2):240-7. PubMed ID: 5049739
    [No Abstract]   [Full Text] [Related]  

  • 18. Relationship between local changes in cortical blood flow and extracellular K+ during spreading depression.
    Hansen AJ; Quistorff B; Gjedde A
    Acta Physiol Scand; 1980 May; 109(1):1-6. PubMed ID: 7446156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue.
    Heinemann U; Konnerth A; Pumain R; Wadman WJ
    Adv Neurol; 1986; 44():641-61. PubMed ID: 3518350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local potassium signaling couples neuronal activity to vasodilation in the brain.
    Filosa JA; Bonev AD; Straub SV; Meredith AL; Wilkerson MK; Aldrich RW; Nelson MT
    Nat Neurosci; 2006 Nov; 9(11):1397-1403. PubMed ID: 17013381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.