These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interaction. Sicard M; Le Brun N; Pages S; Godelle B; Boemare N; Moulia C Parasitol Res; 2003 Dec; 91(6):520-4. PubMed ID: 14557877 [TBL] [Abstract][Full Text] [Related]
25. Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Sicard M; Ramone H; Le Brun N; Pagès S; Moulia C Naturwissenschaften; 2005 Oct; 92(10):472-6. PubMed ID: 16163505 [TBL] [Abstract][Full Text] [Related]
26. Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Sergeant M; Baxter L; Jarrett P; Shaw E; Ousley M; Winstanley C; Morgan JA Appl Environ Microbiol; 2006 Sep; 72(9):5895-907. PubMed ID: 16957209 [TBL] [Abstract][Full Text] [Related]
27. A study on Xenorhabdus and Photorhabdus isolates from Northeastern Thailand: Identification, antibacterial activity, and association with entomopathogenic nematode hosts. Yimthin T; Fukruksa C; Muangpat P; Dumidae A; Wattanachaiyingcharoen W; Vitta A; Thanwisai A PLoS One; 2021; 16(8):e0255943. PubMed ID: 34383819 [TBL] [Abstract][Full Text] [Related]
28. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. Bisch G; Pagès S; McMullen JG; Stock SP; Duvic B; Givaudan A; Gaudriault S J Invertebr Pathol; 2015 Jan; 124():15-22. PubMed ID: 25315609 [TBL] [Abstract][Full Text] [Related]
29. Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode. An R; Grewal PS PLoS One; 2016; 11(1):e0145739. PubMed ID: 26745883 [TBL] [Abstract][Full Text] [Related]
30. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Tailliez P; Laroui C; Ginibre N; Paule A; Pagès S; Boemare N Int J Syst Evol Microbiol; 2010 Aug; 60(Pt 8):1921-1937. PubMed ID: 19783607 [TBL] [Abstract][Full Text] [Related]
31. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
32. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Goodrich-Blair H Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732 [TBL] [Abstract][Full Text] [Related]
33. Morphological, molecular and ecological characterization of a native isolate of Steinernema feltiae (Rhabditida: Steinernematidae) from southern Chile. Flores P; Alvarado A; Lankin G; Lax P; Prodan S; Aballay E Parasit Vectors; 2021 Jan; 14(1):45. PubMed ID: 33436058 [TBL] [Abstract][Full Text] [Related]
34. High Levels of the Xenorhabdus nematophila Transcription Factor Lrp Promote Mutualism with the Steinernema carpocapsae Nematode Host. Cao M; Patel T; Rickman T; Goodrich-Blair H; Hussa EA Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389546 [No Abstract] [Full Text] [Related]
35. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Somvanshi VS; Lang E; Ganguly S; Swiderski J; Saxena AK; Stackebrandt E Syst Appl Microbiol; 2006 Nov; 29(7):519-25. PubMed ID: 16459045 [TBL] [Abstract][Full Text] [Related]
36. Antimicrobial activity of Xenorhabdus sp. RIO (Enterobacteriaceae), symbiont of the entomopathogenic nematode, Steinernema riobrave (Rhabditida: Steinernematidae). Isaacson PJ; Webster JM J Invertebr Pathol; 2002 Mar; 79(3):146-53. PubMed ID: 12133703 [TBL] [Abstract][Full Text] [Related]
37. Xenorhabdus bovienii T228 phase variation and virulence are independent of RecA function. Pinyon RA; Hew FH; Thomas CJ Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2815-2824. PubMed ID: 11065360 [TBL] [Abstract][Full Text] [Related]
38. Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Hérault and Gard (Southern France). Emelianoff V; Le Brun N; Pagès S; Stock SP; Tailliez P; Moulia C; Sicard M J Invertebr Pathol; 2008 Jun; 98(2):211-7. PubMed ID: 18353356 [TBL] [Abstract][Full Text] [Related]
39. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Addis T; Teshome A; Strauch O; Ehlers RU Appl Microbiol Biotechnol; 2016 May; 100(10):4357-66. PubMed ID: 26701359 [TBL] [Abstract][Full Text] [Related]
40. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Ogier JC; Pagès S; Frayssinet M; Gaudriault S Microbiome; 2020 Feb; 8(1):25. PubMed ID: 32093774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]