These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27342112)

  • 81. The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes.
    Cowles CE; Goodrich-Blair H
    J Bacteriol; 2008 Jun; 190(12):4121-8. PubMed ID: 18390667
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae.
    Singh S; Orr D; Divinagracia E; McGraw J; Dorff K; Forst S
    Appl Environ Microbiol; 2015 Jan; 81(2):754-64. PubMed ID: 25398871
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fitness costs of symbiont switching using entomopathogenic nematodes as a model.
    McMullen JG; Peterson BF; Forst S; Blair HG; Stock SP
    BMC Evol Biol; 2017 Apr; 17(1):100. PubMed ID: 28412935
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Characterization of Polish Steinernema silvaticum isolates (Nematoda: Steinernematidae) using morphological and molecular data.
    Lis M; Sajnaga E; Kreft A; Skrzypek T; Kazimierczak W
    J Helminthol; 2019 May; 93(3):356-366. PubMed ID: 29661266
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes.
    Chaston JM; Murfin KE; Heath-Heckman EA; Goodrich-Blair H
    Cell Microbiol; 2013 Sep; 15(9):1545-59. PubMed ID: 23480552
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii.
    Ogier JC; Pagès S; Bisch G; Chiapello H; Médigue C; Rouy Z; Teyssier C; Vincent S; Tailliez P; Givaudan A; Gaudriault S
    Genome Biol Evol; 2014 Jun; 6(6):1495-513. PubMed ID: 24904010
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Transcriptomic Analysis of
    Lefoulon E; McMullen JG; Stock SP
    Front Physiol; 2022; 13():821845. PubMed ID: 35283769
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The effect of temperature on the fatty acids and isozymes of a psychrotrophic and two mesophilic species of Xenorhabdus, a bacterial symbiont of entomopathogenic nematodes.
    He H; Gordon R; Gow JA
    Can J Microbiol; 2001 May; 47(5):382-91. PubMed ID: 11400727
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition.
    Richards GR; Goodrich-Blair H
    Cell Microbiol; 2009 Jul; 11(7):1025-33. PubMed ID: 19374654
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).
    Hirao A; Ehlers RU
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):507-15. PubMed ID: 19597815
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterisation of symbionts of entomopathogenic nematodes by universally primed-PCR (UP-PCR) and UP-PCR product cross-hybridisation.
    Nielsen O; Lübeck PS
    FEMS Microbiol Lett; 2002 Sep; 215(1):63-8. PubMed ID: 12393202
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species.
    Emelianoff V; Sicard M; Le Brun N; Moulia C; Ferdy JB
    Parasitol Res; 2007 Feb; 100(3):657-9. PubMed ID: 16944202
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes.
    Tóth T; Lakatos T
    Int J Syst Evol Microbiol; 2008 Nov; 58(Pt 11):2579-81. PubMed ID: 18984696
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations.
    Mucci NC; Jones KA; Cao M; Wyatt MR; Foye S; Kauffman SJ; Richards GR; Taufer M; Chikaraishi Y; Steffan SA; Campagna SR; Goodrich-Blair H
    mSystems; 2022 Jun; 7(3):e0031222. PubMed ID: 35543104
    [TBL] [Abstract][Full Text] [Related]  

  • 95. 16S rDNA-based phylogeny of non-symbiotic bacteria of Entorno-pathogenic nematodes from infected insect cadavers.
    Razia M; Karthikraja R; Padmanaban K; Chellapandi P; Sivaramakrishnan S
    Genomics Proteomics Bioinformatics; 2011 Jun; 9(3):104-12. PubMed ID: 21802047
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A survey of entomopathogenic nematodes and their symbiotic bacteria in agricultural areas of northern Thailand.
    Ardpairin J; Muangpat P; Sonpom S; Dumidae A; Subkrasae C; Tandhavanant S; Thanwisai A; Vitta A
    J Helminthol; 2020 Sep; 94():e192. PubMed ID: 32924906
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Bacterial community profile after the lethal infection of Steinernema-Xenorhabdus pairs into soil-reared Tenebrio molitor larvae.
    Cambon MC; Lafont P; Frayssinet M; Lanois A; Ogier JC; Pagès S; Parthuisot N; Ferdy JB; Gaudriault S
    FEMS Microbiol Ecol; 2020 Feb; 96(2):. PubMed ID: 31942980
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The phylogenetic significance of peptidoglycan types: Molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16SrRNA genes.
    Richert K; Brambilla E; Stackebrandt E
    Syst Appl Microbiol; 2007 Mar; 30(2):102-8. PubMed ID: 16684595
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A Conserved Nonribosomal Peptide Synthetase in
    Li JH; Cho W; Hamchand R; Oh J; Crawford JM
    J Nat Prod; 2021 Oct; 84(10):2692-2699. PubMed ID: 34581573
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Discovery of a new highly pathogenic toxin involved in insect sepsis.
    Zhang Y; Li H; Wang F; Liu C; Reddy GVP; Li H; Li Z; Sun Y; Zhao Z
    Microbiol Spectr; 2023 Dec; 11(6):e0142223. PubMed ID: 37787562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.