BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27342116)

  • 21. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity.
    Georgoulis A; Louka M; Mylonas S; Stavros P; Nounesis G; Vorgias CE
    Extremophiles; 2020 Mar; 24(2):293-306. PubMed ID: 31980943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus.
    Mate DM; Rivera NR; Sanchez-Freire E; Ayala JA; Berenguer J; Hidalgo A
    Biotechnol Bioeng; 2020 Jan; 117(1):30-38. PubMed ID: 31529702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus-Thermus" and distinguish its main constituent groups.
    Ho J; Adeolu M; Khadka B; Gupta RS
    Syst Appl Microbiol; 2016 Oct; 39(7):453-463. PubMed ID: 27506333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA.
    Van Dyke MW; Beyer MD; Clay E; Hiam KJ; McMurry JL; Xie Y
    PLoS One; 2016; 11(7):e0159408. PubMed ID: 27428627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27.
    Schwarzenlander C; Averhoff B
    FEBS J; 2006 Sep; 273(18):4210-8. PubMed ID: 16939619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the mismatch and insertion/deletion binding properties of Thermus thermophilus, HB8, MutS.
    Whitehouse A; Deeble J; Parmar R; Taylor GR; Markham AF; Meredith DM
    Biochem Biophys Res Commun; 1997 Apr; 233(3):834-7. PubMed ID: 9168943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.
    Mallik S; Kundu S
    J Biomol Struct Dyn; 2015; 33(3):639-56. PubMed ID: 24697502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural changes induced by ligand binding drastically increase the thermostability of the Ser/Thr protein kinase TpkD from Thermus thermophilus HB8.
    Fujino Y; Miyagawa T; Torii M; Inoue M; Fujii Y; Okanishi H; Kanai Y; Masui R
    FEBS Lett; 2021 Jan; 595(2):264-274. PubMed ID: 33159808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermostability of Enzymes from Molecular Dynamics Simulations.
    Zeiske T; Stafford KA; Palmer AG
    J Chem Theory Comput; 2016 Jun; 12(6):2489-92. PubMed ID: 27123810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system.
    Nakamura A; Takumi K; Miki K
    J Mol Biol; 2010 Mar; 396(4):1000-11. PubMed ID: 20036249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compact reduced thioredoxin structure from the thermophilic bacteria Thermus thermophilus.
    Rehse PH; Kumei M; Tahirov TH
    Proteins; 2005 Dec; 61(4):1032-7. PubMed ID: 16245350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteins of Thermus thermophilus are resistant to glycation-induced protein precipitation: an evolutionary adaptation to life at extreme temperatures?
    Münch G; Berbaum K; Urban C; Schinzel R
    Ann N Y Acad Sci; 2005 Jun; 1043():865-75. PubMed ID: 16037313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional evolution of bacterial histone-like HU proteins.
    Grove A
    Curr Issues Mol Biol; 2011; 13(1):1-12. PubMed ID: 20484776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural plasticity and thermal stability of the histone-like protein from Spiroplasma melliferum are due to phenylalanine insertions into the conservative scaffold.
    Timofeev VI; Altukhov DA; Talyzina AA; Agapova YK; Vlaskina AV; Korzhenevskiy DA; Kleymenov SY; Bocharov EV; Rakitina TV
    J Biomol Struct Dyn; 2018 Dec; 36(16):4392-4404. PubMed ID: 29283021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel protein-engineered dsDNA-binding protein (HU-Simulacrum) inspired by HU, a nucleoid-associated DNABII protein.
    Thakur B; Gupta A; Guptasarma P
    Biochem Biophys Res Commun; 2021 Jan; 534():47-52. PubMed ID: 33310187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site.
    Nevskaya N; Tishchenko S; Nikulin A; al-Karadaghi S; Liljas A; Ehresmann B; Ehresmann C; Garber M; Nikonov S
    J Mol Biol; 1998 May; 279(1):233-44. PubMed ID: 9636713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acetylome with structural mapping reveals the significance of lysine acetylation in Thermus thermophilus.
    Okanishi H; Kim K; Masui R; Kuramitsu S
    J Proteome Res; 2013 Sep; 12(9):3952-68. PubMed ID: 23901841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directly fishing out subtle mutations in genomic DNA with histidine-tagged Thermus thermophilus MutS.
    Wang J; Liu J
    Mutat Res; 2004 Mar; 547(1-2):41-7. PubMed ID: 15013697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermus thermophilus cytochrome-c552: A new highly thermostable cytochrome-c structure obtained by MAD phasing.
    Than ME; Hof P; Huber R; Bourenkov GP; Bartunik HD; Buse G; Soulimane T
    J Mol Biol; 1997 Aug; 271(4):629-44. PubMed ID: 9281430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.